A Survey on Intent-aware Recommender Systems
- URL: http://arxiv.org/abs/2406.16350v3
- Date: Sat, 19 Oct 2024 18:04:52 GMT
- Title: A Survey on Intent-aware Recommender Systems
- Authors: Dietmar Jannach, Markus Zanker,
- Abstract summary: A recommender system should aim to take the users' probable intent of using the service at a certain point in time into account.
In this paper, we survey and categorize existing approaches to building the next generation of Intent-Aware Recommender Systems.
- Score: 8.761638205244427
- License:
- Abstract: Many modern online services feature personalized recommendations. A central challenge when providing such recommendations is that the reason why an individual user accesses the service may change from visit to visit or even during an ongoing usage session. To be effective, a recommender system should therefore aim to take the users' probable intent of using the service at a certain point in time into account. In recent years, researchers have thus started to address this challenge by incorporating intent-awareness into recommender systems. Correspondingly, a number of technical approaches were put forward, including diversification techniques, intent prediction models or latent intent modeling approaches. In this paper, we survey and categorize existing approaches to building the next generation of Intent-Aware Recommender Systems (IARS). Based on an analysis of current evaluation practices, we outline open gaps and possible future directions in this area, which in particular include the consideration of additional interaction signals and contextual information to further improve the effectiveness of such systems.
Related papers
- All Roads Lead to Rome: Unveiling the Trajectory of Recommender Systems Across the LLM Era [63.649070507815715]
We aim to integrate recommender systems into a broader picture, and pave the way for more comprehensive solutions for future research.
We identify two evolution paths of modern recommender systems -- via list-wise recommendation and conversational recommendation.
We point out that the information effectiveness of the recommendation is increased, while the user's acquisition cost is decreased.
arXiv Detail & Related papers (2024-07-14T05:02:21Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Exploration of the possibility of infusing Social Media Trends into
generating NFT Recommendations [0.0]
The utilization of opinion mining data extracted from trends has been attempted to improve the recommendations.
Social trends to influence the recommendations generated for a set of unique items has been explored.
The proposed Recommendations Architecture in the research presents a method to integrate social trends with recommendations to produce promising outputs.
arXiv Detail & Related papers (2022-05-03T22:14:12Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - Reinforcement Learning for Strategic Recommendations [32.73903761398027]
Strategic recommendations (SR) refer to the problem where an intelligent agent observes the sequential behaviors and activities of users and decides when and how to interact with them to optimize some long-term objectives, both for the user and the business.
At Adobe research, we have been implementing such systems for various use-cases, including points of interest recommendations, tutorial recommendations, next step guidance in multi-media editing software, and ad recommendation for optimizing lifetime value.
There are many research challenges when building these systems, such as modeling the sequential behavior of users, deciding when to intervene and offer recommendations without annoying the user, evaluating policies offline with
arXiv Detail & Related papers (2020-09-15T20:45:48Z) - Recommender Systems for the Internet of Things: A Survey [53.865011795953706]
Recommendation represents a vital stage in developing and promoting the benefits of the Internet of Things.
Traditional recommender systems fail to exploit ever-growing, dynamic, and heterogeneous IoT data.
arXiv Detail & Related papers (2020-07-14T01:24:44Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
Conversational recommender systems (CRS) take a different approach and support a richer set of interactions.
The interest in CRS has significantly increased in the past few years.
This development is mainly due to the significant progress in the area of natural language processing.
arXiv Detail & Related papers (2020-04-01T18:00:47Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.