論文の概要: Machine Learning with Real-time and Small Footprint Anomaly Detection System for In-Vehicle Gateway
- arxiv url: http://arxiv.org/abs/2406.16369v1
- Date: Mon, 24 Jun 2024 07:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:53:24.597573
- Title: Machine Learning with Real-time and Small Footprint Anomaly Detection System for In-Vehicle Gateway
- Title(参考訳): 車載ゲートウェイ用リアルタイム・小型足跡異常検出システムを用いた機械学習
- Authors: Yi Wang, Yuanjin Zheng, Yajun Ha,
- Abstract要約: 我々は、自己情報理論を用いて、トレーニングとテストモデルの値を生成することを提案する。
提案手法は偽陽性率(FPR)の8.7倍,テスト時間が1.77倍,フットプリントが4.88倍である。
- 参考スコア(独自算出の注目度): 6.9113469208163245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly Detection System (ADS) is an essential part of a modern gateway Electronic Control Unit (ECU) to detect abnormal behaviors and attacks in vehicles. Among the existing attacks, ``one-time`` attack is the most challenging to be detected, together with the strict gateway ECU constraints of both microsecond or even nanosecond level real-time budget and limited footprint of code. To address the challenges, we propose to use the self-information theory to generate values for training and testing models, aiming to achieve real-time detection performance for the ``one-time`` attack that has not been well studied in the past. Second, the generation of self-information is based on logarithm calculation, which leads to the smallest footprint to reduce the cost in Gateway. Finally, our proposed method uses an unsupervised model without the need of training data for anomalies or attacks. We have compared different machine learning methods ranging from typical machine learning models to deep learning models, e.g., Hidden Markov Model (HMM), Support Vector Data Description (SVDD), and Long Short Term Memory (LSTM). Experimental results show that our proposed method achieves 8.7 times lower False Positive Rate (FPR), 1.77 times faster testing time, and 4.88 times smaller footprint.
- Abstract(参考訳): 異常検知システム(ADS)は、車両の異常な挙動や攻撃を検出するため、現代的なゲートウェイ電子制御ユニット(ECU)の不可欠な部分である。
既存の攻撃の中で、 ``one-time``攻撃は、マイクロ秒またはナノ秒レベルのリアルタイム予算とコードフットプリントの制限による厳格なゲートウェイECU制約とともに、検出するのが最も難しい。
これらの課題に対処するために,我々は,過去に研究されていない「ワンタイム」攻撃に対するリアルタイム検出性能の実現を目指して,自己情報理論を用いて,トレーニングとテストモデルの値を生成することを提案する。
第二に、自己情報の生成は対数計算に基づいており、ゲートウェイのコストを削減するために最小のフットプリントにつながる。
最後に,本提案手法では,異常や攻撃のトレーニングデータを必要としない教師なしモデルを用いている。
一般的な機械学習モデルからディープラーニングモデル、例えばHMM(Hidden Markov Model)、SVDD(Support Vector Data Description)、LSTM(Long Short Term Memory)など、さまざまな機械学習手法を比較した。
実験の結果,提案手法は偽陽性率(FPR)の8.7倍,テスト時間が1.77倍,フットプリントが4.88倍であることがわかった。
関連論文リスト
- P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
引き離された運転は重大な安全上の問題であり、世界中で多くの死者と負傷につながっている。
本研究では、注意をそらされた運転行動を検出するための効率的でリアルタイムな機械学習モデルの必要性に対処する。
リアルタイムオブジェクト検出システムを導入し、速度と精度の両方に最適化する。
論文 参考訳(メタデータ) (2024-10-21T02:56:44Z) - TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
論文 参考訳(メタデータ) (2024-07-09T13:32:33Z) - IT Intrusion Detection Using Statistical Learning and Testbed
Measurements [8.493936898320673]
我々は、ITインフラにおける自動侵入検知、特に攻撃開始の特定の問題について研究する。
隠れマルコフモデル(HMM)、Long Short-Term Memory(LSTM)、Random Forest(RFC)などの統計的学習手法を適用した。
HMMとLSTMの両方が攻撃開始時間、攻撃タイプ、攻撃行動を予測するのに有効であることがわかった。
論文 参考訳(メタデータ) (2024-02-20T15:25:56Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
本稿では,加速度センサデータに基づくジェスチャー認識と画像分類の2つの実例として,最先端の4つのアルゴリズムを比較した。
以上の結果から,これらのシステムの信頼性と小型メモリMCUへのデプロイの可能性が確認された。
論文 参考訳(メタデータ) (2022-09-01T17:05:20Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
アウト・オブ・ディストリビューション(OD)検出は、リアルタイムにアウト・オブ・ディストリビューションを検出するという課題に対処する新しいアプローチである。
本稿では,自律走行エージェントの周囲の有害な動きを頑健に検出する方法について述べる。
提案手法は,OoD因子の検出能力を一意に改善し,最先端手法よりも42%向上した。
また,本モデルでは,実験した実世界およびシミュレーション駆動データに対して,最先端技術よりも97%の精度でほぼ完璧に一般化した。
論文 参考訳(メタデータ) (2021-07-25T07:52:53Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z) - Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems [1.4213973379473654]
サイバー物理システムは、現実世界の不確実性と可変性を処理できる機械学習コンポーネントを使用することで恩恵を受ける。
しかし、ディープニューラルネットワークは、システムの安全性に影響を及ぼす可能性のある、新しいタイプのハザードを導入している。
アウト・オブ・ディストリビューションデータは大きなエラーを引き起こし、安全性を損なう可能性がある。
論文 参考訳(メタデータ) (2020-01-28T17:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。