論文の概要: Context-augmented Retrieval: A Novel Framework for Fast Information Retrieval based Response Generation using Large Language Model
- arxiv url: http://arxiv.org/abs/2406.16383v2
- Date: Wed, 31 Jul 2024 15:02:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 21:11:18.479232
- Title: Context-augmented Retrieval: A Novel Framework for Fast Information Retrieval based Response Generation using Large Language Model
- Title(参考訳): 文脈拡張検索:大規模言語モデルを用いた高速情報検索型応答生成のための新しいフレームワーク
- Authors: Sai Ganesh, Anupam Purwar, Gautam B,
- Abstract要約: 文脈情報のコーパスが大きくなるにつれて、検索型拡張生成(RAG)ベースの質問回答システム(QA)の回答/推論品質は低下する。
本研究は,古典的テキスト分類とLarge Language Model(LLM)を組み合わせることで,この問題を解決する。
新しいアプローチ Context Augmented Search (CAR) は、情報検索と回答生成時間の大幅な削減とともに、優れた品質の回答生成を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generating high-quality answers consistently by providing contextual information embedded in the prompt passed to the Large Language Model (LLM) is dependent on the quality of information retrieval. As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines. This work solves this problem by combining classical text classification with the Large Language Model (LLM) to enable quick information retrieval from the vector store and ensure the relevancy of retrieved information. For the same, this work proposes a new approach Context Augmented retrieval (CAR), where partitioning of vector database by real-time classification of information flowing into the corpus is done. CAR demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.
- Abstract(参考訳): LLM(Large Language Model)に渡されるプロンプトに埋め込まれた文脈情報を提供することで、高品質な回答を一貫して生成することは、情報検索の品質に依存する。
文脈情報のコーパスが大きくなるにつれて、検索型拡張生成(RAG)ベースの質問回答システム(QA)の回答/推論品質は低下する。
本研究は,従来のテキスト分類とLarge Language Model(LLM)を組み合わせることで,ベクトルストアからの迅速な情報検索を可能にし,検索した情報の関連性を確保する。
同様に、本研究では、コーパスに流れ込む情報のリアルタイム分類によるベクトルデータベースの分割を行う新しいアプローチであるContext Augmented Search (CAR)を提案する。
CARは、情報検索と回答生成時間の大幅な短縮とともに、高品質な回答生成を示す。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Exploring Hint Generation Approaches in Open-Domain Question Answering [16.434748534272014]
HINTQAと呼ばれる新しいコンテキスト準備手法を導入する。
従来の方法とは異なり、HINTQA は LLM に対して質問に対する潜在的な答えのヒントを作成するよう促している。
提案手法は,検索した文脈や生成した文脈よりも解答の精度を高めるものである。
論文 参考訳(メタデータ) (2024-09-24T13:50:32Z) - QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval [12.225881591629815]
厳密な検索では、長いテキストを密度の高いベクトルに埋め込むと、情報が失われ、クエリとテキストのマッチングが不正確になる。
近年の研究では,文の埋め込みモデルや検索プロセスの改善を中心に研究が進められている。
本稿では,高密度検索のための新しいテキスト拡張フレームワークを導入し,生文書を高密度テキスト形式に変換する。
論文 参考訳(メタデータ) (2024-07-29T17:39:08Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
そこで本研究では,質問応答システムに必要な文脈の小型化と品質向上に焦点をあてる。
私たちのゴールは、最も意味のあるドキュメントを選択し、捨てられたドキュメントをアウトリーチとして扱うことです。
その結果,質問や回答の複雑さを増大させることで,最大の改善が達成された。
論文 参考訳(メタデータ) (2024-07-01T15:53:29Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
生成検索システムは、しばしばクエリに対する応答として、接地された生成されたテキストを直接返す。
このような生成的アドホック検索を適切に評価するには,テキスト応答の有用性の定量化が不可欠である。
論文 参考訳(メタデータ) (2023-11-08T14:05:00Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
本稿では,文書検索を大規模言語モデル生成器に置き換えることで,知識集約型タスクを解く新しい視点を提案する。
我々は,提案手法をgenRead (genRead) と呼び,まず大きな言語モデルに対して,与えられた質問に基づいて文脈文書を生成し,次に生成された文書を読み出して最終回答を生成する。
論文 参考訳(メタデータ) (2022-09-21T01:30:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。