論文の概要: GeAR: Generation Augmented Retrieval
- arxiv url: http://arxiv.org/abs/2501.02772v1
- Date: Mon, 06 Jan 2025 05:29:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:08:07.320885
- Title: GeAR: Generation Augmented Retrieval
- Title(参考訳): GeAR: 世代別検索
- Authors: Haoyu Liu, Shaohan Huang, Jianfeng Liu, Yuefeng Zhan, Hao Sun, Weiwei Deng, Feng Sun, Furu Wei, Qi Zhang,
- Abstract要約: 文書検索技術は大規模情報システム開発の基礎となる。
一般的な手法は、バイエンコーダを構築し、セマンティックな類似性を計算することである。
我々は、よく設計された融合およびデコードモジュールを組み込んだ $textbfGe$neration という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 82.20696567697016
- License:
- Abstract: Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
- Abstract(参考訳): 文書検索技術は大規模情報システム開発の基礎となる。
一般的な手法は、バイエンコーダを構築し、セマンティックな類似性を計算することである。
しかし、そのようなスカラー類似性は十分な情報を反映することは困難であり、検索結果の理解を妨げる。
さらに、この計算プロセスは、主にグローバルな意味論を強調し、クエリとドキュメントの複雑なテキストの間のきめ細かい意味関係を無視する。
本稿では、よく設計された融合および復号モジュールを組み込んだ $\textbf{Ge}$neration $\textbf{A}$ugmented $\textbf{R}$etrieval ($\textbf{GeAR}$) という新しい手法を提案する。
これにより、GeARはクエリとドキュメントの融合表現に基づいてドキュメントから関連するテキストを生成することができ、きめ細かい情報を"フォーカス"することを学ぶことができる。
また、レトリバーとして使用する場合、GeARはバイエンコーダに計算負荷を加えない。
新たなフレームワークのトレーニングを支援するため,我々は,大規模言語モデルを用いて高品質なデータを効率的に合成するパイプラインを導入した。
GeARは、さまざまなシナリオとデータセットで競合する検索とローカライゼーションのパフォーマンスを示す。
さらに、GeARが生成した定性解析と結果により、検索結果の解釈に関する新たな洞察が得られる。
コード、データ、モデルは、将来の研究を促進するために技術的なレビューを終えた後にリリースされる。
関連論文リスト
- G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAGはグラフデータベースを統合して、検索プロセスを強化する。
文書のより詳細な表現を実現するために,エージェントベースの解析手法を実装した。
論文 参考訳(メタデータ) (2024-11-21T21:22:58Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval [12.225881591629815]
厳密な検索では、長いテキストを密度の高いベクトルに埋め込むと、情報が失われ、クエリとテキストのマッチングが不正確になる。
近年の研究では,文の埋め込みモデルや検索プロセスの改善を中心に研究が進められている。
本稿では,高密度検索のための新しいテキスト拡張フレームワークを導入し,生文書を高密度テキスト形式に変換する。
論文 参考訳(メタデータ) (2024-07-29T17:39:08Z) - $\text{EFO}_{k}$-CQA: Towards Knowledge Graph Complex Query Answering
beyond Set Operation [36.77373013615789]
本稿では,データ生成,モデルトレーニング,メソッド評価のためのフレームワークを提案する。
実験的な評価のために,データセットとして$textEFO_k$-CQAを構築した。
論文 参考訳(メタデータ) (2023-07-15T13:18:20Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - A Proposed Conceptual Framework for a Representational Approach to
Information Retrieval [42.67826268399347]
本稿では,情報検索と自然言語処理における最近の発展を理解するための概念的枠組みについて概説する。
本稿では,コアテキスト検索問題を論理的スコアリングモデルと物理的検索モデルに分解する表現的アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T15:57:02Z) - Deep Graph Matching and Searching for Semantic Code Retrieval [76.51445515611469]
本稿では,グラフニューラルネットワークに基づくエンドツーエンドのディープグラフマッチングと探索モデルを提案する。
まず、自然言語クエリテキストとプログラミング言語のコードスニペットをグラフ構造化データで表現する。
特に、DGMSは、個々のクエリテキストやコードスニペットのより構造的な情報をキャプチャするだけでなく、それらの微妙な類似性も学習する。
論文 参考訳(メタデータ) (2020-10-24T14:16:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。