論文の概要: Dynamic Pseudo Label Optimization in Point-Supervised Nuclei Segmentation
- arxiv url: http://arxiv.org/abs/2406.16427v1
- Date: Mon, 24 Jun 2024 08:20:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:43:33.453830
- Title: Dynamic Pseudo Label Optimization in Point-Supervised Nuclei Segmentation
- Title(参考訳): 点スーパービジョンされた核セグメンテーションにおける動的擬似ラベル最適化
- Authors: Ziyue Wang, Ye Zhang, Yifeng Wang, Linghan Cai, Yongbing Zhang,
- Abstract要約: 我々は、textbfDynamic pseudo label textbfOptimization in point-supervised textbfNuclei textbfSegmentation を実現するDoNuSegというフレームワークを提案する。
DoNuSegは、クラスアクティベーションマップ(CAM)を利用して、アノテーション付きポイントに似た意味を持つ領域を適応的にキャプチャする。
- 参考スコア(独自算出の注目度): 17.698430642075813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has achieved impressive results in nuclei segmentation, but the massive requirement for pixel-wise labels remains a significant challenge. To alleviate the annotation burden, existing methods generate pseudo masks for model training using point labels. However, the generated masks are inevitably different from the ground truth, and these dissimilarities are not handled reasonably during the network training, resulting in the subpar performance of the segmentation model. To tackle this issue, we propose a framework named DoNuSeg, enabling \textbf{D}ynamic pseudo label \textbf{O}ptimization in point-supervised \textbf{Nu}clei \textbf{Seg}mentation. Specifically, DoNuSeg takes advantage of class activation maps (CAMs) to adaptively capture regions with semantics similar to annotated points. To leverage semantic diversity in the hierarchical feature levels, we design a dynamic selection module to choose the optimal one among CAMs from different encoder blocks as pseudo masks. Meanwhile, a CAM-guided contrastive module is proposed to further enhance the accuracy of pseudo masks. In addition to exploiting the semantic information provided by CAMs, we consider location priors inherent to point labels, developing a task-decoupled structure for effectively differentiating nuclei. Extensive experiments demonstrate that DoNuSeg outperforms state-of-the-art point-supervised methods. The code is available at https://github.com/shinning0821/MICCAI24-DoNuSeg.
- Abstract(参考訳): 深層学習は核セグメンテーションにおいて顕著な成果を上げてきたが、ピクセルワイドラベルの膨大な要求は依然として大きな課題である。
アノテーションの負担を軽減するため、既存の手法は点ラベルを用いたモデルトレーニングのための擬似マスクを生成する。
しかし、生成したマスクは必然的に真実とは異なっており、これらの相違はネットワークトレーニング中に合理的に処理されないため、セグメンテーションモデルのサブパー性能が向上する。
この問題に対処するため、我々はDoNuSegというフレームワークを提案し、点教師付き \textbf{Nu}clei \textbf{Seg}mentation における \textbf{D}ynamic pseudo label \textbf{O}ptimization を可能にする。
具体的には、DoNuSegはクラスアクティベーションマップ(CAM)を利用して、アノテーション付きポイントに似た意味を持つ領域を適応的にキャプチャする。
階層的特徴レベルにおける意味的多様性を活用するために,異なるエンコーダブロックから最適なCAMを擬似マスクとして選択する動的選択モジュールを設計する。
一方、疑似マスクの精度をさらに高めるため、CAM誘導コントラストモジュールが提案されている。
CAMが提供するセマンティック情報を活用することに加えて、ポイントラベル固有の位置先を考慮し、効果的に核を識別するためのタスク分離構造を開発する。
大規模な実験により、DoNuSegは最先端のポイント管理手法より優れていることが示された。
コードはhttps://github.com/shinning0821/MICCAI24-DoNuSegで公開されている。
関連論文リスト
- Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label [16.745019028033518]
画像レベルのクラスから情報を得たスクリブルアノテーションと擬似ラベルと、監督のためのグローバルセマンティクスの両方を利用するクラス駆動型スクリブルプロモーションネットワークを提案する。
スクリブルアノテーションの異なる性質を持つScribbleSupデータセットの実験は、従来の手法よりも優れており、本手法の優位性と堅牢性を示している。
論文 参考訳(メタデータ) (2024-02-27T14:51:56Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
自己学習はドメイン間セマンティックセグメンテーションにおいて一般的なアプローチである。
本稿ではセマンティック・コネクティビティ駆動の擬似ラベル方式を提案する。
このアプローチは、接続レベルにおいて擬似ラベルを定式化し、構造的および低雑音のセマンティクスの学習を容易にする。
論文 参考訳(メタデータ) (2023-12-11T12:29:51Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
画像レベルの弱い教師付きセグメンテーション(WSSS)は、トレーニング中にセグメンテーションマスクを代理することで、通常膨大なデータアノテーションコストを削減する。
本研究は,GAPの代替となる重要サンプリングと特徴類似性損失という,CAMを改善するための2つの手法に基づく。
複数の独立二項問題の後部二項問題に基づいて両手法を再構成する。
パフォーマンスが向上し、より一般的なものになり、事実上あらゆるWSSSメソッドを増強できるアドオンメソッドが出来上がります。
論文 参考訳(メタデータ) (2023-04-05T17:43:57Z) - Unified Mask Embedding and Correspondence Learning for Self-Supervised
Video Segmentation [76.40565872257709]
我々は、局所的な識別的特徴学習のためのフレーム間密度対応を同時にモデル化する統合フレームワークを開発する。
ラベルなしビデオから直接マスク誘導シーケンシャルセグメンテーションを実行することができる。
我々のアルゴリズムは、2つの標準ベンチマーク(DAVIS17とYouTube-VOS)に最先端をセットする。
論文 参考訳(メタデータ) (2023-03-17T16:23:36Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - Pointly-Supervised Panoptic Segmentation [106.68888377104886]
弱教師付き単眼セグメンテーションにポイントレベルのアノテーションを適用するための新しい手法を提案する。
完全に教師された方法で使用される高密度のピクセルレベルラベルの代わりに、ポイントレベルラベルは、監督対象ごとに単一のポイントしか提供しない。
我々は、ポイントレベルのラベルから同時に汎視的擬似マスクを生成し、それらから学習することで、エンドツーエンドのフレームワークにおける問題を定式化する。
論文 参考訳(メタデータ) (2022-10-25T12:03:51Z) - Inferring the Class Conditional Response Map for Weakly Supervised
Semantic Segmentation [27.269847900950943]
そこで我々は,より優れた擬似ラベルを生成するために,クラス条件推論戦略とアクティベーション対応マスク精細化損失関数を提案する。
本手法は,分類器の再学習を必要とせず,優れたWSSS結果が得られる。
論文 参考訳(メタデータ) (2021-10-27T09:43:40Z) - Learning Class-Agnostic Pseudo Mask Generation for Box-Supervised
Semantic Segmentation [156.9155100983315]
ボックス教師付きセマンティクスセグメンテーションに合わせた,より正確な学習ベースのクラス非依存な擬似マスクジェネレータを求める。
この方法は、ボックス監視モデルとフル監視モデルの間のパフォーマンスギャップをさらに埋めることができます。
論文 参考訳(メタデータ) (2021-03-09T14:54:54Z) - Causal Intervention for Weakly-Supervised Semantic Segmentation [122.1846968696862]
画像レベルのラベルのみを用いて、より優れたピクセルレベルの擬似マスクを生成することを目指している。
画像,コンテキスト,およびクラスラベル間の因果関係を分析するための構造因果モデルを提案する。
そこで本研究では,画像レベルの分類において,矛盾するバイアスを取り除くためのコンテキスト調整(CONTA)手法を提案する。
論文 参考訳(メタデータ) (2020-09-26T09:26:29Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
本稿では,ある点レベルのアノテーションが与えられた画像から意味的セグメンテーションを生成する新しい手法を提案する。
提案するCNNは,通常,地上の真理ラベルの代わりに擬似ラベルを用いて完全に教師される。
提案手法は,PASCAL VOC 2012 データセットを引用した PASCAL VOC 2012 のセマンティックセマンティックセマンティフィケーションのための技術結果の状態を達成し,より強いバウンディングボックスやリスグル管理のための技術手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-10T21:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。