Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
- URL: http://arxiv.org/abs/2406.16439v3
- Date: Sun, 18 Aug 2024 07:45:23 GMT
- Title: Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
- Authors: Shilei Cao, Yan Liu, Juepeng Zheng, Weijia Li, Runmin Dong, Haohuan Fu,
- Abstract summary: Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains.
We present CTAOD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain.
Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels.
- Score: 13.163784646113214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world application models are commonly deployed in dynamic environments, where the target domain distribution undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains. Despite recent advancements in addressing CTTA, two critical issues remain: 1) Fixed thresholds for pseudo-labeling in existing methodologies generate low-quality pseudo-labels, as model confidence varies across categories and domains; 2) Stochastic parameter restoration methods for mitigating catastrophic forgetting fail to effectively preserve critical information due to their intrinsic randomness. To tackle these challenges for detection models in CTTA scenarios, we present CTAOD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain. Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels. Lastly, the data-driven stochastic restoration mechanism selectively reset inactive parameters with higher possibilities, ensuring the retention of essential knowledge. We demonstrate the effectiveness of CTAOD on four CTTA object detection tasks, where CTAOD outperforms existing methods, especially achieving a 3.2 mAP improvement and a 20% increase in efficiency on the Cityscapes-to-Cityscapes-C CTTA task. The code will be released.
Related papers
- Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement [25.11883761217408]
Remote photoplethysmography (r) is gaining prominence for its non-invasive approach to monitoring physiological signals using only cameras.
Despite its promise, the adaptability of r models to new domains is hindered due to the environmental sensitivity of physiological signals.
We present Bi-TTA, a novel expert knowledge-based Bidirectional Test-Time Adapter framework.
arXiv Detail & Related papers (2024-09-25T19:55:20Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - What, How, and When Should Object Detectors Update in Continually
Changing Test Domains? [34.13756022890991]
Test-time adaptation algorithms have been proposed to adapt the model online while inferring test data.
We propose a novel online adaption approach for object detection in continually changing test domains.
Our approach surpasses baselines on widely used benchmarks, achieving improvements of up to 4.9%p and 7.9%p in mAP.
arXiv Detail & Related papers (2023-12-12T07:13:08Z) - Effective Restoration of Source Knowledge in Continual Test Time
Adaptation [44.17577480511772]
This paper introduces an unsupervised domain change detection method that is capable of identifying domain shifts in dynamic environments.
By restoring the knowledge from the source, it effectively corrects the negative consequences arising from the gradual deterioration of model parameters.
We perform extensive experiments on benchmark datasets to demonstrate the superior performance of our method compared to state-of-the-art adaptation methods.
arXiv Detail & Related papers (2023-11-08T19:21:48Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation [33.75630514826721]
We propose a distribution-aware tuning ( DAT) method to make semantic segmentation CTTA efficient and practical in real-world applications.
DAT adaptively selects and updates two small groups of trainable parameters based on data distribution during the continual adaptation process.
We conduct experiments on two widely-used semantic segmentation CTTA benchmarks, achieving promising performance compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2023-09-24T10:48:20Z) - Decorate the Newcomers: Visual Domain Prompt for Continual Test Time
Adaptation [14.473807945791132]
Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data.
Motivated by the prompt learning in NLP, in this paper we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen.
arXiv Detail & Related papers (2022-12-08T08:56:02Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.