論文の概要: Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
- arxiv url: http://arxiv.org/abs/2406.16439v4
- Date: Wed, 13 Nov 2024 09:41:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:50.416189
- Title: Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
- Title(参考訳): 連続的に変化する環境における物体検出のためのテスト時間適応の探索
- Authors: Shilei Cao, Yan Liu, Juepeng Zheng, Weijia Li, Runmin Dong, Haohuan Fu,
- Abstract要約: 最近CTTA(Continuous Test-Time Adaptation)が、ターゲットドメインを継続的に変更するソーストレーニングモデルに徐々に適応する、有望なテクニックとして登場した。
まず、オブジェクトレベルのコントラスト学習モジュールは、対象領域における特徴表現を洗練させるために、コントラスト学習のためのオブジェクトレベルの特徴を抽出する。
第2に、適応監視モジュールは、不要な適応を動的にスキップし、予測された信頼度スコアに基づいてカテゴリ固有のしきい値を更新して、効率を向上し、擬似ラベルの品質を向上させる。
- 参考スコア(独自算出の注目度): 13.163784646113214
- License:
- Abstract: Real-world application models are commonly deployed in dynamic environments, where the target domain distribution undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains. Despite recent advancements in addressing CTTA, two critical issues remain: 1) Fixed thresholds for pseudo-labeling in existing methodologies lead to low-quality pseudo-labels, as model confidence varies across categories and domains; 2) Stochastic parameter restoration methods for mitigating catastrophic forgetting fail to preserve critical information effectively, due to their intrinsic randomness. To tackle these challenges for detection models in CTTA scenarios, we present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain. Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels. Lastly, the adaptive randomized restoration mechanism selectively reset inactive parameters with higher possibilities, ensuring the retention of essential knowledge. We demonstrate the effectiveness of AMROD on four CTTA object detection tasks, where AMROD outperforms existing methods, especially achieving a 3.2 mAP improvement and a 20% increase in efficiency on the Cityscapes-to-Cityscapes-C CTTA task. The code will be released.
- Abstract(参考訳): 現実のアプリケーションモデルは、ターゲットのドメイン分布が時間的変化を受ける動的環境に一般的にデプロイされます。
最近CTTA(Continuous Test-Time Adaptation)が、ターゲットドメインを継続的に変更するソーストレーニングモデルに徐々に適応する、有望なテクニックとして登場した。
近年のCTTA対応の進歩にもかかわらず,2つの重要な課題が残っている。
1)既存手法における擬似ラベルの固定しきい値は,モデル信頼性がカテゴリやドメインによって異なるため,低品質な擬似ラベルにつながる。
2) 破壊的忘れを緩和するための確率的パラメータ復元法は, その内在的ランダム性のため, 重要な情報を効果的に保存することができない。
CTTAシナリオにおける検出モデルに対するこれらの課題に対処するため、3つのコアコンポーネントを特徴とするAMRODを提案する。
まず、オブジェクトレベルのコントラスト学習モジュールは、対象領域における特徴表現を洗練させるために、コントラスト学習のためのオブジェクトレベルの特徴を抽出する。
第2に、適応監視モジュールは、不要な適応を動的にスキップし、予測された信頼度スコアに基づいてカテゴリ固有のしきい値を更新して、効率を向上し、擬似ラベルの品質を向上させる。
最後に、適応ランダム化された復元機構は、より高い可能性で不活性なパラメータを選択的にリセットし、本質的な知識の保持を保証する。
本研究では,4つのCTTAオブジェクト検出タスクにおけるAMRODの有効性を示す。AMRODは既存の手法よりも優れており,特にCityscapes-to-Cityscapes-C CTTAタスクにおいて3.2mAPの改善と20%の効率向上を実現している。
コードはリリースされます。
関連論文リスト
- DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
ラベル付きデータなしで機械学習モデルを新しいドメインに適応させることは、医療画像、自律運転、リモートセンシングといったアプリケーションにおいて重要な課題である。
Source-Free Unsupervised Domain Adaptation (SFUDA)と呼ばれるこのタスクでは、未ラベルのターゲットデータのみを使用して、トレーニング済みのモデルをターゲットドメインに適応させる。
既存のSFUDAメソッドは、しばしば単一モデルアーキテクチャに依存し、ターゲットドメインにおける不確実性と可変性に悩まされる。
本稿では、2重モデルアーキテクチャを利用した新しいSFUDAフレームワークDRIVEを提案する。
論文 参考訳(メタデータ) (2024-11-24T20:35:04Z) - Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement [25.11883761217408]
リモート光胸腺撮影(r)は、カメラのみを用いて生理的信号を監視する非侵襲的アプローチとして注目されている。
約束にもかかわらず、新しいドメインへのrモデルの適応性は、生理的信号の環境感受性のために妨げられている。
Bi-TTA(Bidirectional Test-Time Adapter)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-09-25T19:55:20Z) - CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection [16.96201890965781]
本稿では,ラベル付きシミュレーションからラベル付き現実領域へモデルを転送するための新しいフレームワークを提案する。
実験結果から,提案手法は3次元物体検出モデルの実領域適応能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-26T07:31:16Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Effective Restoration of Source Knowledge in Continual Test Time
Adaptation [44.17577480511772]
本稿では、動的環境におけるドメインシフトを識別できる教師なし領域変更検出手法を提案する。
情報源から知識を復元することにより、モデルパラメータの段階的劣化に起因する負の結果を効果的に補正する。
我々は,最先端の適応手法と比較して,提案手法の優れた性能を示すために,ベンチマークデータセットの広範な実験を行った。
論文 参考訳(メタデータ) (2023-11-08T19:21:48Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。