論文の概要: NARRepair: Non-Autoregressive Code Generation Model for Automatic Program Repair
- arxiv url: http://arxiv.org/abs/2406.16526v1
- Date: Mon, 24 Jun 2024 11:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:14:19.630770
- Title: NARRepair: Non-Autoregressive Code Generation Model for Automatic Program Repair
- Title(参考訳): NARRepair: 自動プログラム修復のための非自己回帰コード生成モデル
- Authors: Zhenyu Yang, Zhen Yang, Zhongxing Yu,
- Abstract要約: Non-Autoregressive(NAR)メソッドは、巨大な推論遅延を避けるために、並列にターゲットコードを出力することができる。
APRタスクのための最初のカスタマイズされたNAARコード生成モデルであるNARRepairを提案する。
NARRepair は,1) 補修動作を用いて過補正問題を緩和し,2) AST から依存情報を抽出して単語間の依存情報の欠如を緩和し,3) 文脈情報の欠如を緩和するために2段階の復号を用いる,という3つの大きな特徴を特徴としている。
- 参考スコア(独自算出の注目度): 8.77021401961262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of deep learning techniques, the performance of Automatic Program Repair(APR) techniques has reached a new level. Previous deep learning-based APR techniques essentially modified program sentences in the Autoregressive(AR) manner, which predicts future values based on past values. Due to the manner of word-by-word generation, the AR-based APR technique has a huge time delay. This negative consequence overshadows the widespread adoption of APR techniques in real-life software development. To address the issue, we aim to apply the Non-Autoregressive(NAR) method to the APR task, which can output target code in a parallel manner to avoid huge inference delays. To effectively adapt the NAR manner for the APR task, we in this paper propose NARRepair, the first customized NAR code generation model for the APR task. The NARRepair features three major novelties, including 1) using repair actions to alleviate the over-correction issue, 2) extracting dependency information from AST to alleviate the issue of lacking inter-word dependency information, 3) employing two-stage decoding to alleviate the issue of lacking contextual information. We evaluated NARRepair on three widely used datasets in the APR community, and the results show that our technique can significantly improve the inference speed while maintaining high repair accuracy.
- Abstract(参考訳): 深層学習技術の進歩により,APR(Automatic Program repair)技術の性能は新たなレベルに達した。
従来のディープラーニングに基づくAPR技術は,過去値に基づいて将来の値を予測するAutoregressive(AR)方式でプログラム文を基本的に修正した。
ワード・バイ・ワード生成の方法により、ARベースのAPR技術は大幅に遅延する。
この否定的な結果は、現実のソフトウェア開発において、APR技術が広く採用されていることを覆している。
この問題に対処するため,APRタスクにNon-Autoregressive(NAR)メソッドを適用することを目的としている。
本稿では,APRタスクにNAR方式を効果的に適用するために,最初のカスタマイズされたNAARコード生成モデルであるNARRepairを提案する。
NARRepairは3つの主要なノベルティを特徴としている。
1) 過補正問題を緩和するために修理行為を使用する。
2) ASTから依存情報を抽出し、単語間の依存情報を欠く問題を緩和する。
3)文脈情報の欠如の問題を軽減するため,2段階の復号化を図った。
我々は,APRコミュニティで広く使用されている3つのデータセットに対してNARRepairを評価し,高い修復精度を維持しつつ,推論速度を大幅に向上させることができることを示した。
関連論文リスト
- Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
生成誤差補正モデルは、トレーニング中に発生する特定の種類のエラーを超えて一般化することが困難であることを示す。
DARAGは、ドメイン内(ID)およびOODシナリオにおけるASRのためのGCCを改善するために設計された新しいアプローチである。
私たちのアプローチはシンプルでスケーラブルで、ドメインと言語に依存しません。
論文 参考訳(メタデータ) (2024-10-17T04:00:29Z) - The Impact of Program Reduction on Automated Program Repair [0.3277163122167433]
本稿では,現代のAPRツールのスケーラビリティ向上を目的としたプログラム修復手法について述べる。
本研究では,スライシングが修復プロセスの3つの段階,すなわち障害局所化,パッチ生成,パッチ検証に与える影響について検討する。
プログラムの削減は修理品質を劣化させることなくAPRの性能を向上させることができるが、この改善は普遍的ではない。
論文 参考訳(メタデータ) (2024-08-02T09:23:45Z) - Distilling and Retrieving Generalizable Knowledge for Robot Manipulation via Language Corrections [45.420679219101245]
オンライン補正(DROC)の蒸留と検索について紹介する。
DROCは大規模言語モデル(LLM)ベースのシステムで、任意の形式の言語フィードバックに対応できる。
DROCは、知識ベースにおけるオンライン修正のシーケンスから、関連情報を効果的に蒸留できることを実証する。
論文 参考訳(メタデータ) (2023-11-17T18:00:20Z) - A Survey of Learning-based Automated Program Repair [12.09968472868107]
自動プログラム修復(APR)は、ソフトウェアバグを自動修正することを目的としており、ソフトウェア開発とメンテナンスにおいて重要な役割を果たす。
近年のディープラーニング(DL)の進歩により、ニューラルネットワークを活用して大規模なオープンソースコードリポジトリからバグフィックスパターンを学ぶためのAPR技術が増えている。
本稿では,学習型APRコミュニティにおける最先端研究を要約するために,体系的な調査を行う。
論文 参考訳(メタデータ) (2023-01-09T11:08:15Z) - Improving Automated Program Repair with Domain Adaptation [0.0]
自動プログラム修復(APR)は、ソースコードのバグ/欠陥を修正するプロセスとして、自動化ツールによって定義される。
APRツールは最近、最先端のニューラルネットワーク処理(NLP)技術を活用することで、有望な結果を経験している。
論文 参考訳(メタデータ) (2022-12-21T23:52:09Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
過去の経験のデータセットを最適な行動にマップするために、ネットワークをトレーニングします。
検索プロセスは、現在のコンテキストで有用なデータセットから情報を取得するために訓練される。
検索強化R2D2はベースラインR2D2エージェントよりもかなり高速に学習し,より高いスコアを得ることを示す。
論文 参考訳(メタデータ) (2022-02-17T02:44:05Z) - FastCorrect: Fast Error Correction with Edit Alignment for Automatic
Speech Recognition [90.34177266618143]
編集アライメントに基づく新しいNAR誤り訂正モデルであるFastCorrectを提案する。
fastcorrectは推論を6-9倍高速化し、自己回帰補正モデルと比較して精度を8-14%向上させる。
ニューラルマシン翻訳で採用されている一般的なNARモデルの精度を、大きなマージンで上回っています。
論文 参考訳(メタデータ) (2021-05-09T05:35:36Z) - CURE: Code-Aware Neural Machine Translation for Automatic Program Repair [11.556110575946631]
提案するCUREは,3つの新奇性を持つ新しいNMTベースのAPR手法である。
CUREは、APRタスクの前に開発者ライクなソースコードを学ぶために、大きなソフトウェア上でプログラミング言語(PL)モデルを事前にトレーニングします。
第2に、curyは、バギーコードに近いコンパイル可能なパッチとパッチに注目して、より正確な修正を見つける新しいコードアウェア検索戦略をデザインする。
論文 参考訳(メタデータ) (2021-02-26T22:30:28Z) - FastLR: Non-Autoregressive Lipreading Model with Integrate-and-Fire [74.04394069262108]
我々は,全てのターゲットトークンを同時に生成する非自己回帰(NAR)リップリーダーモデルであるFastLRを提案する。
FastLRは最先端のリップリーダーモデルと比較して10.97$times$のスピードアップを実現している。
論文 参考訳(メタデータ) (2020-08-06T08:28:56Z) - A Study of Non-autoregressive Model for Sequence Generation [147.89525760170923]
非自己回帰(NAR)モデルは、シーケンスのすべてのトークンを並列に生成する。
本稿では,ARモデルとNARモデルのギャップを埋めるために,知識蒸留とソースターゲットアライメントを提案する。
論文 参考訳(メタデータ) (2020-04-22T09:16:09Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
我々は、可読性のためのASRポストプロセッシング(APR)と呼ばれる新しいNLPタスクを提案する。
APRは、ノイズの多いASR出力を、話者の意味を保ちながら、人間や下流タスクのための読みやすいテキストに変換することを目的としている。
我々は,いくつかのオープンソースモデルと適応型事前学習モデルに基づく微調整モデルと,従来のパイプライン手法との比較を行った。
論文 参考訳(メタデータ) (2020-04-09T09:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。