論文の概要: GIM: A Million-scale Benchmark for Generative Image Manipulation Detection and Localization
- arxiv url: http://arxiv.org/abs/2406.16531v2
- Date: Mon, 13 Jan 2025 14:34:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:10.276557
- Title: GIM: A Million-scale Benchmark for Generative Image Manipulation Detection and Localization
- Title(参考訳): GIM: 生成画像操作検出と位置推定のための100万規模のベンチマーク
- Authors: Yirui Chen, Xudong Huang, Quan Zhang, Wei Li, Mingjian Zhu, Qiangyu Yan, Simiao Li, Hanting Chen, Hailin Hu, Jie Yang, Wei Liu, Jie Hu,
- Abstract要約: 我々はSAM, LLM, 生成モデルの強力な機能を統合するローカルな操作データ生成パイプラインを構築している。
1)大規模では、AIが操作する画像と実画像が100万組以上含まれている。
- 参考スコア(独自算出の注目度): 21.846935203845728
- License:
- Abstract: The extraordinary ability of generative models emerges as a new trend in image editing and generating realistic images, posing a serious threat to the trustworthiness of multimedia data and driving the research of image manipulation detection and location (IMDL). However, the lack of a large-scale data foundation makes the IMDL task unattainable. In this paper, we build a local manipulation data generation pipeline that integrates the powerful capabilities of SAM, LLM, and generative models. Upon this basis, we propose the GIM dataset, which has the following advantages: 1) Large scale, GIM includes over one million pairs of AI-manipulated images and real images. 2) Rich image content, GIM encompasses a broad range of image classes. 3) Diverse generative manipulation, the images are manipulated images with state-of-the-art generators and various manipulation tasks. The aforementioned advantages allow for a more comprehensive evaluation of IMDL methods, extending their applicability to diverse images. We introduce the GIM benchmark with two settings to evaluate existing IMDL methods. In addition, we propose a novel IMDL framework, termed GIMFormer, which consists of a ShadowTracer, Frequency-Spatial block (FSB), and a Multi-Window Anomalous Modeling (MWAM) module. Extensive experiments on the GIM demonstrate that GIMFormer surpasses the previous state-of-the-art approach on two different benchmarks.
- Abstract(参考訳): 生成モデルの異常な能力は、画像編集と現実的な画像生成の新しいトレンドとして現れ、マルチメディアデータの信頼性に深刻な脅威を与え、画像操作検出と位置(IMDL)の研究を推進している。
しかし、大規模なデータ基盤がないため、IMDLタスクは実現不可能である。
本稿ではSAM, LLM, 生成モデルの強力な機能を統合するローカルな操作データ生成パイプラインを構築する。
そこで我々は,以下の利点を有するGIMデータセットを提案する。
1)大規模では、AIが操作する画像と実画像が100万組以上含まれている。
2)リッチな画像コンテンツ,GIMは幅広い画像クラスを包含する。
3) 多様な生成操作では, 画像は最先端のジェネレータと様々な操作タスクで操作される。
前述の利点により、IMDLメソッドのより包括的な評価が可能となり、多様な画像に適用可能になった。
既存のIMDL手法を評価するために,GIMベンチマークを2つの設定で導入する。
さらに、シャドウトレーサ、周波数空間ブロック(FSB)、マルチウィンドウ異常モデリング(MWAM)モジュールからなる新しいIMDLフレームワークGIMFormerを提案する。
GIMに関する大規模な実験は、GIMFormerが以前の2つの異なるベンチマークにおける最先端のアプローチを上回ることを示した。
関連論文リスト
- Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications [3.7636375810345744]
大きな言語モデル(LLM)は、質問に答える際、印象的な能力を示してきたが、それらはドメイン固有の知識に欠け、幻覚を起こす傾向がある。
Retrieval Augmented Generation(RAG)は、これらの課題に対処するためのアプローチのひとつであり、マルチモーダルモデルは、テキストとイメージの両方を処理するための有望なAIアシスタントとして現れている。
本稿では,産業領域のRAGシステムにマルチモーダルモデルをどのように組み込むかを決定するための一連の実験について述べる。
論文 参考訳(メタデータ) (2024-10-29T11:03:31Z) - Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
そこで本研究では,様々な医用画像からの深い特徴の整合を図るために,新しい粗いMDIRフレームワークLLM-Morphを提案する。
具体的には、まずCNNエンコーダを用いて、クロスモーダル画像ペアから深い視覚的特徴を抽出し、次に、最初のアダプタを使ってこれらのトークンを調整する。
第3に、トークンのアライメントのために、他の4つのアダプタを使用して、LLM符号化トークンをマルチスケールの視覚特徴に変換し、マルチスケールの変形場を生成し、粗いMDIRタスクを容易にする。
論文 参考訳(メタデータ) (2024-08-20T09:58:30Z) - INF-LLaVA: Dual-perspective Perception for High-Resolution Multimodal Large Language Model [71.50973774576431]
本稿では,高解像度画像認識のための新しいMLLM INF-LLaVAを提案する。
我々はDCM(Dual-perspective Cropping Module)を導入し、各サブイメージが局所的な視点から連続的な詳細を含むことを保証する。
第2に,グローバルな特徴と局所的な特徴の相互強化を可能にするDEM(Dual-perspective Enhancement Module)を導入する。
論文 参考訳(メタデータ) (2024-07-23T06:02:30Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
MLLM(Performant Multimodal Large Language Models)を構築する。
特に,さまざまなアーキテクチャコンポーネントとデータ選択の重要性について検討する。
本稿では,画像キャプチャ,インターリーブ画像テキスト,テキストのみのデータを組み合わせた大規模マルチモーダル事前学習について述べる。
論文 参考訳(メタデータ) (2024-03-14T17:51:32Z) - CoCoT: Contrastive Chain-of-Thought Prompting for Large Multimodal
Models with Multiple Image Inputs [48.269363759989915]
この研究は、第1、画像対画像マッチング、第2、複数画像対テキストマッチングという2つの側面に焦点を当てている。
我々は, GPT-4V, Gemini, OpenFlamingo, MMICLを含む, オープンソースおよびクローズドソースの大規模モデルについて評価を行った。
論文 参考訳(メタデータ) (2024-01-05T00:26:07Z) - PROMPT-IML: Image Manipulation Localization with Pre-trained Foundation
Models Through Prompt Tuning [35.39822183728463]
本稿では,改ざん画像を検出するための新しいPrompt-IMLフレームワークを提案する。
人間は、意味情報と高周波情報に基づいて、画像の真偽を識別する傾向がある。
我々のモデルは8つの典型的なフェイク画像データセットでより良い性能を得ることができる。
論文 参考訳(メタデータ) (2024-01-01T03:45:07Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - ViTAEv2: Vision Transformer Advanced by Exploring Inductive Bias for
Image Recognition and Beyond [76.35955924137986]
我々は、内在性IBを畳み込み、すなわちViTAEから探索するビジョントランスフォーマーを提案する。
ViTAEはいくつかの空間ピラミッド縮小モジュールを備えており、入力イメージをリッチなマルチスケールコンテキストでトークンに埋め込む。
我々は、ImageNet検証セット上で88.5%のTop-1分類精度と、ImageNet実検証セット上で最高の91.2%のTop-1分類精度を得る。
論文 参考訳(メタデータ) (2022-02-21T10:40:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。