論文の概要: Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
- arxiv url: http://arxiv.org/abs/2410.21943v1
- Date: Tue, 29 Oct 2024 11:03:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:34.529289
- Title: Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
- Title(参考訳): Beyond Text: 産業用マルチモーダル入力によるRAGの最適化
- Authors: Monica Riedler, Stefan Langer,
- Abstract要約: 大きな言語モデル(LLM)は、質問に答える際、印象的な能力を示してきたが、それらはドメイン固有の知識に欠け、幻覚を起こす傾向がある。
Retrieval Augmented Generation(RAG)は、これらの課題に対処するためのアプローチのひとつであり、マルチモーダルモデルは、テキストとイメージの両方を処理するための有望なAIアシスタントとして現れている。
本稿では,産業領域のRAGシステムにマルチモーダルモデルをどのように組み込むかを決定するための一連の実験について述べる。
- 参考スコア(独自算出の注目度): 3.7636375810345744
- License:
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities in answering questions, but they lack domain-specific knowledge and are prone to hallucinations. Retrieval Augmented Generation (RAG) is one approach to address these challenges, while multimodal models are emerging as promising AI assistants for processing both text and images. In this paper we describe a series of experiments aimed at determining how to best integrate multimodal models into RAG systems for the industrial domain. The purpose of the experiments is to determine whether including images alongside text from documents within the industrial domain increases RAG performance and to find the optimal configuration for such a multimodal RAG system. Our experiments include two approaches for image processing and retrieval, as well as two LLMs (GPT4-Vision and LLaVA) for answer synthesis. These image processing strategies involve the use of multimodal embeddings and the generation of textual summaries from images. We evaluate our experiments with an LLM-as-a-Judge approach. Our results reveal that multimodal RAG can outperform single-modality RAG settings, although image retrieval poses a greater challenge than text retrieval. Additionally, leveraging textual summaries from images presents a more promising approach compared to the use of multimodal embeddings, providing more opportunities for future advancements.
- Abstract(参考訳): 大きな言語モデル(LLM)は、質問に答える際、印象的な能力を示してきたが、それらはドメイン固有の知識に欠け、幻覚を起こす傾向がある。
Retrieval Augmented Generation(RAG)は、これらの課題に対処するためのアプローチのひとつであり、マルチモーダルモデルは、テキストとイメージの両方を処理するための有望なAIアシスタントとして現れている。
本稿では,産業領域向けRAGシステムにマルチモーダルモデルをどのように組み込むかを決定するための一連の実験について述べる。
本実験の目的は,産業領域内の文書のテキストに付随する画像を含めることでRAG性能が向上するか否かを判定し,マルチモーダルRAGシステムの最適構成を求めることである。
我々の実験には、画像処理と検索のための2つのアプローチと、回答合成のための2つのLLM(GPT4-VisionとLLaVA)が含まれる。
これらの画像処理戦略には、マルチモーダル埋め込みの使用と、画像からのテキスト要約の生成が含まれる。
LLM-as-a-Judge 法を用いて実験を行った。
以上の結果から,マルチモーダルRAGは単一モダリティRAG設定より優れていることがわかったが,画像検索はテキスト検索よりも大きな課題となっている。
さらに、画像からテキスト要約を活用することは、マルチモーダル埋め込みの使用よりもより有望なアプローチを示し、将来の進歩の機会を提供する。
関連論文リスト
- MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation [25.252173311925027]
マルチモーダル,マルチGSD,マルチシーンリモートセンシング(MMM-RS)データセットと,多様なリモートセンシングシナリオにおけるテキスト・ツー・イメージ生成のためのベンチマークを提案する。
大規模な事前学習型視覚言語モデルを用いて、テキストプロンプトを自動出力し、手作りの修正を行う。
広範囲な手動スクリーニングと修正アノテーションにより、最終的に約2100万のテキストイメージペアからなるMMM-RSデータセットを得る。
論文 参考訳(メタデータ) (2024-10-26T11:19:07Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - MMIU: Multimodal Multi-image Understanding for Evaluating Large Vision-Language Models [76.1999277491816]
MMIU(Multimodal Multi-image Understanding)は、LVLM(Large Vision-Language Models)を評価するための総合的な評価スイートである。
MMIUには7種類のマルチイメージ関係、52のタスク、77Kのイメージ、1Kの微調整された複数選択質問が含まれている。
オープンソースモデルとプロプライエタリモデルの両方を含む24種類のLVLMを評価した結果,マルチイメージ理解における大きな課題が明らかになった。
論文 参考訳(メタデータ) (2024-08-05T17:56:41Z) - Searching for Best Practices in Retrieval-Augmented Generation [31.438681543849224]
Retrieval-augmented Generation (RAG) 技術は最新情報の統合に有効であることが証明されている。
本稿では,既存のRAG手法とその潜在的な組み合わせについて検討し,最適なRAG手法を同定する。
我々は、パフォーマンスと効率のバランスをとるRAGをデプロイするためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-07-01T12:06:34Z) - Unified Text-to-Image Generation and Retrieval [96.72318842152148]
MLLM(Multimodal Large Language Models)の文脈における統一フレームワークを提案する。
まず,MLLMの内在的識別能力について検討し,学習自由な方法で検索を行うための生成的検索手法を提案する。
次に、自動回帰生成方式で生成と検索を統一し、生成した画像と検索した画像の最も適合した画像を選択する自律的決定モジュールを提案する。
論文 参考訳(メタデータ) (2024-06-09T15:00:28Z) - Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
論文 参考訳(メタデータ) (2024-04-03T23:20:40Z) - UNIMO-G: Unified Image Generation through Multimodal Conditional Diffusion [36.06457895469353]
UNIMO-Gは条件付き拡散フレームワークであり、インターリーブされたテキストと視覚入力を持つマルチモーダルプロンプトで動作する。
テキスト・ツー・イメージ生成とゼロショット・テーマ駆動合成の両面で優れている。
論文 参考訳(メタデータ) (2024-01-24T11:36:44Z) - CoCoT: Contrastive Chain-of-Thought Prompting for Large Multimodal
Models with Multiple Image Inputs [48.269363759989915]
この研究は、第1、画像対画像マッチング、第2、複数画像対テキストマッチングという2つの側面に焦点を当てている。
我々は, GPT-4V, Gemini, OpenFlamingo, MMICLを含む, オープンソースおよびクローズドソースの大規模モデルについて評価を行った。
論文 参考訳(メタデータ) (2024-01-05T00:26:07Z) - ZRIGF: An Innovative Multimodal Framework for Zero-Resource
Image-Grounded Dialogue Generation [17.310200022696016]
ZRIGFは2段階の学習戦略を実装し、対照的な事前学習と生成的事前学習を含む。
テキストベースと画像グラウンドの対話データセットを用いた総合的な実験は、ZRIGFが文脈的に関連する情報的応答を生成するのに有効であることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:28:36Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
マルチモーダルな名前付きエンティティ認識(NER)と関係抽出(RE)は、関連画像情報を活用してNERとREの性能を向上させることを目的としている。
新たなマルチモーダル検索フレームワーク(MoRe)を提案する。
MoReはテキスト検索モジュールと画像ベースの検索モジュールを含み、入力されたテキストと画像の関連知識をそれぞれ知識コーパスで検索する。
論文 参考訳(メタデータ) (2022-12-03T13:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。