Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs
- URL: http://arxiv.org/abs/2406.16552v1
- Date: Mon, 24 Jun 2024 11:41:12 GMT
- Title: Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs
- Authors: Jan von Pichowski, Vincenzo Perri, Lisi Qarkaxhija, Ingo Scholtes,
- Abstract summary: HYPA-DBGNN is a novel two-step approach that combines the inference of anomalous sequential patterns in time series data on graphs.
Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs.
Our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies.
- Score: 0.6562256987706128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The modelling of temporal patterns in dynamic graphs is an important current research issue in the development of time-aware GNNs. Whether or not a specific sequence of events in a temporal graph constitutes a temporal pattern not only depends on the frequency of its occurrence. We consider whether it deviates from what is expected in a temporal graph where timestamps are randomly shuffled. While accounting for such a random baseline is important to model temporal patterns, it has mostly been ignored by current temporal graph neural networks. To address this issue we propose HYPA-DBGNN, a novel two-step approach that combines (i) the inference of anomalous sequential patterns in time series data on graphs based on a statistically principled null model, with (ii) a neural message passing approach that utilizes a higher-order De Bruijn graph whose edges capture overrepresented sequential patterns. Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs, which encode the temporal ordering of events. The model introduces an inductive bias that enhances model interpretability. We evaluate our approach for static node classification using benchmark datasets and a synthetic dataset that showcases its ability to incorporate the observed inductive bias regarding over- and under-represented temporal edges. We demonstrate the framework's effectiveness in detecting similar patterns within empirical datasets, resulting in superior performance compared to baseline methods in node classification tasks. To the best of our knowledge, our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies. HYPA-DBGNN represents a path for bridging the gap between statistical graph inference and neural graph representation learning, with potential applications to static GNNs.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
We propose DyGraphAD, a time series anomaly detection framework based upon a list of dynamic inter-series graphs.
The core idea is to detect anomalies based on the deviation of inter-series relationships and intra-series temporal patterns from normal to anomalous states.
Our numerical experiments on real-world datasets demonstrate that DyGraphAD has superior performance than baseline anomaly detection approaches.
arXiv Detail & Related papers (2023-02-04T01:27:01Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative
Models [9.75258136573147]
We propose a new model, called Temporal Graph Generative Adversarial Network'' (TG-GAN) for continuous-time temporal graph generation.
We first propose a novel temporal graph generator that jointly model truncated edge sequences, time budgets, and node attributes.
In addition, a new temporal graph discriminator is proposed, which combines time and node encoding operations over a recurrent architecture to distinguish the generated sequences.
arXiv Detail & Related papers (2020-05-17T17:59:12Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.