Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
- URL: http://arxiv.org/abs/2406.16658v3
- Date: Tue, 05 Nov 2024 11:53:56 GMT
- Title: Sampling Strategies in Bayesian Inversion: A Study of RTO and Langevin Methods
- Authors: Remi Laumont, Yiqiu Dong, Martin Skovgaard Andersen,
- Abstract summary: This paper studies two classes of sampling methods for the solution of inverse problems.
We highlight the main conceptual and theoretical differences between the two approaches and compare them from a practical point of view.
We show that the choice of the sampling method has a significant impact on the quality of the reconstruction and that the RTO method is more robust to the choice of the parameters.
- Score: 0.5243460995467893
- License:
- Abstract: This paper studies two classes of sampling methods for the solution of inverse problems, namely Randomize-Then-Optimize (RTO), which is rooted in sensitivity analysis, and Langevin methods, which are rooted in the Bayesian framework. The two classes of methods correspond to different assumptions and yield samples from different target distributions. We highlight the main conceptual and theoretical differences between the two approaches and compare them from a practical point of view by tackling two classical inverse problems in imaging: deblurring and inpainting. We show that the choice of the sampling method has a significant impact on the quality of the reconstruction and that the RTO method is more robust to the choice of the parameters.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Differentiable Distributionally Robust Optimization Layers [10.667165962654996]
We develop differentiable DRO layers for generic mixed-integer DRO problems with parameterized second-order conic ambiguity sets.
We propose a novel dual-view methodology by handling continuous and discrete parts of decisions via different principles.
Specifically, we construct a differentiable energy-based surrogate to implement the dual-view methodology and use importance sampling to estimate its gradient.
arXiv Detail & Related papers (2024-06-24T12:09:19Z) - Analyzing and Overcoming Local Optima in Complex Multi-Objective Optimization by Decomposition-Based Evolutionary Algorithms [5.153202024713228]
Multi-objective Evolutionary Algorithms (MOEADs) often converge to local optima, limiting solution diversity.
We introduce an innovative RP selection strategy, the Vector-Guided Weight-Hybrid method, designed to overcome the local optima issue.
Our research comprises two main experimental components: an ablation involving 14 algorithms within the MOEADs framework from 2014 to 2022 to validate our theoretical framework, and a series empirical tests to evaluate the effectiveness of our proposed method against both traditional and cutting-edge alternatives.
arXiv Detail & Related papers (2024-04-12T14:29:45Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - Explaining Results of Multi-Criteria Decision Making [2.059757035257655]
We introduce a method for explaining the results of various linear and hierarchical multi-criteria decision-making (MCDM) techniques such as WSM and AHP.
The two key ideas are (A) to maintain a fine-grained representation of the values manipulated by these techniques and (B) to derive explanations from these representations through merging, filtering, and aggregating operations.
arXiv Detail & Related papers (2022-09-10T03:27:35Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - A Multi-objective Evolutionary Algorithm for EEG Inverse Problem [0.0]
We propose a multi-objective approach for the EEG Inverse Problem.
Due to the characteristics of the problem, this alternative included evolutionary strategies to resolve it.
The result is a Multi-objective Evolutionary Algorithm based on Anatomical Restrictions (MOEAAR) to estimate distributed solutions.
arXiv Detail & Related papers (2021-07-21T19:37:27Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample.
A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient.
We propose a single framework under which several such methods can be unified.
arXiv Detail & Related papers (2020-04-06T17:58:08Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.