論文の概要: Inferring stochastic low-rank recurrent neural networks from neural data
- arxiv url: http://arxiv.org/abs/2406.16749v1
- Date: Mon, 24 Jun 2024 15:57:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 14:05:36.932717
- Title: Inferring stochastic low-rank recurrent neural networks from neural data
- Title(参考訳): 確率的低ランクリカレントニューラルネットワークのニューラルネットワークによる推定
- Authors: Matthijs Pals, A Erdem Sağtekin, Felix Pei, Manuel Gloeckler, Jakob H Macke,
- Abstract要約: 計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
- 参考スコア(独自算出の注目度): 5.179844449042386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central aim in computational neuroscience is to relate the activity of large populations of neurons to an underlying dynamical system. Models of these neural dynamics should ideally be both interpretable and fit the observed data well. Low-rank recurrent neural networks (RNNs) exhibit such interpretability by having tractable dynamics. However, it is unclear how to best fit low-rank RNNs to data consisting of noisy observations of an underlying stochastic system. Here, we propose to fit stochastic low-rank RNNs with variational sequential Monte Carlo methods. We validate our method on several datasets consisting of both continuous and spiking neural data, where we obtain lower dimensional latent dynamics than current state of the art methods. Additionally, for low-rank models with piecewise linear nonlinearities, we show how to efficiently identify all fixed points in polynomial rather than exponential cost in the number of units, making analysis of the inferred dynamics tractable for large RNNs. Our method both elucidates the dynamical systems underlying experimental recordings and provides a generative model whose trajectories match observed trial-to-trial variability.
- Abstract(参考訳): 計算神経科学における中心的な目的は、多くのニューロンの活動と基礎となる力学系を関連付けることである。
これらのニューラルダイナミクスのモデルは、理想的には解釈可能であり、観測されたデータによく適合する。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことにより、そのような解釈可能性を示す。
しかし、基礎となる確率システムのノイズの多い観測から得られるデータに対して、低ランクのRNNを最適に適合させる方法は不明である。
本稿では,確率的低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
連続的およびスパイク的なニューラルデータからなる複数のデータセット上で本手法の有効性を検証する。
さらに, 片方向線形非線形性を持つ低ランクモデルに対しては, 単位数の指数的コストではなく, 多項式のすべての固定点を効率的に同定する方法を示し, 大規模RNNに対して抽出可能な推論力学の解析を行う。
本手法は, 実験記録に基づく力学系を解明し, トラジェクトリが試験と臨床の変動に一致した生成モデルを提供する。
関連論文リスト
- Rethinking Spiking Neural Networks as State Space Models [1.9775291915550175]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワークに代わる生物学的に妥当な代替品として提案されている。
状態空間モデルに基づく新しいスパイキング神経モデルについて述べる。
我々のモデルは、様々な長距離依存タスクにまたがるSNNモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2024-06-05T04:23:11Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Expressive architectures enhance interpretability of dynamics-based
neural population models [2.294014185517203]
シミュレーションされたニューラルネットワークから潜在カオスを引き付ける際のシーケンシャルオートエンコーダ(SAE)の性能を評価する。
広帯域再帰型ニューラルネットワーク(RNN)を用いたSAEでは,真の潜在状態次元での正確な発射速度を推定できないことがわかった。
論文 参考訳(メタデータ) (2022-12-07T16:44:26Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
論文 参考訳(メタデータ) (2022-06-07T02:25:38Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Bubblewrap: Online tiling and real-time flow prediction on neural
manifolds [2.624902795082451]
本稿では, 高速で安定な次元減少と, 結果のニューラル多様体のソフトタイリングを結合する手法を提案する。
得られたモデルはキロヘルツのデータレートでトレーニングでき、数分で神経力学の正確な近似を生成し、ミリ秒以下の時間スケールで予測を生成する。
論文 参考訳(メタデータ) (2021-08-31T16:01:45Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。