論文の概要: Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics
- arxiv url: http://arxiv.org/abs/2206.02972v2
- Date: Fri, 16 Jun 2023 20:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 06:07:35.127510
- Title: Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics
- Title(参考訳): ニューラルネットワークの潜伏成分を学習するための分解線形力学系(dLDS)
- Authors: Noga Mudrik, Yenho Chen, Eva Yezerets, Christopher J. Rozell, and Adam
S. Charles
- Abstract要約: 本稿では,時系列データの非定常および非線形の複雑なダイナミクスを表現した新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
連続時間と離散時間の両方の指導例において、我々のモデルは元のシステムによく近似できることを示した。
- 参考スコア(独自算出の注目度): 6.829711787905569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning interpretable representations of neural dynamics at a population
level is a crucial first step to understanding how observed neural activity
relates to perception and behavior. Models of neural dynamics often focus on
either low-dimensional projections of neural activity, or on learning dynamical
systems that explicitly relate to the neural state over time. We discuss how
these two approaches are interrelated by considering dynamical systems as
representative of flows on a low-dimensional manifold. Building on this
concept, we propose a new decomposed dynamical system model that represents
complex non-stationary and nonlinear dynamics of time series data as a sparse
combination of simpler, more interpretable components. Our model is trained
through a dictionary learning procedure, where we leverage recent results in
tracking sparse vectors over time. The decomposed nature of the dynamics is
more expressive than previous switched approaches for a given number of
parameters and enables modeling of overlapping and non-stationary dynamics. In
both continuous-time and discrete-time instructional examples we demonstrate
that our model can well approximate the original system, learn efficient
representations, and capture smooth transitions between dynamical modes,
focusing on intuitive low-dimensional non-stationary linear and nonlinear
systems. Furthermore, we highlight our model's ability to efficiently capture
and demix population dynamics generated from multiple independent subnetworks,
a task that is computationally impractical for switched models. Finally, we
apply our model to neural "full brain" recordings of C. elegans data,
illustrating a diversity of dynamics that is obscured when classified into
discrete states.
- Abstract(参考訳): 集団レベルでの神経力学の解釈可能な表現を学習することは、観察された神経活動が知覚と行動にどのように関係するかを理解するための重要な第一歩である。
ニューラルダイナミクスのモデルでは、神経活動の低次元の投影や、時間とともに神経の状態に明示的に関係する力学系の学習にしばしば焦点が当てられる。
低次元多様体上の流れの表現として力学系を考えることにより、これらの2つのアプローチがどのように相互関係を持つかについて議論する。
この概念に基づいて,時系列データの複雑な非定常および非線形ダイナミクスを,より単純で解釈可能なコンポーネントの疎結合として表現する,新しい分解力学系モデルを提案する。
我々のモデルは辞書学習によって訓練され、最近の結果を利用してスパースベクトルを時間とともに追跡する。
動力学の分解的な性質は、与えられた数個のパラメータに対する以前のスイッチングアプローチよりも表現力が高く、オーバーラップと非定常ダイナミクスのモデリングを可能にする。
連続時間と離散時間の両方の指導例において、本モデルが元の系をよく近似し、効率的な表現を学習し、より直感的な低次元の非定常線形および非線形系に焦点を当てた動的モード間の滑らかな遷移をキャプチャできることを実証する。
さらに,複数の独立したサブネットワークから生成される個体群動態を効率よく捕捉・解凍する,モデルの性能を強調した。
最後に, c. elegans データの神経的"フルブレイン"記録にモデルを適用し, 離散的状態に分類すると不明瞭なダイナミクスの多様性を示す。
関連論文リスト
- Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
ガウス過程スイッチング線形力学系(gpSLDS)の2つの目的をバランスさせるアプローチを開発する。
我々の手法は、非線形力学をガウス過程(GP-SDE)で記述した微分方程式による潜在状態の進化をモデル化した以前の研究に基づいている。
本手法は, 離散状態境界近傍の力学における人工振動など, rSLDS の重要な限界を解消するとともに, 力学の後方不確かさを推定する。
論文 参考訳(メタデータ) (2024-07-19T15:32:15Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODEは、NODEで動的システムのモデリングを行うための、最初の半教師付きアプローチである。
複数の動的システムモデリングタスクにおいて,ベースラインのNeural ODEモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-19T19:17:12Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
そこで我々は,manifold dynamics を局所流れ場に分解し,それらを共通潜在空間にマッピングする表現学習手法 MARBLE を提案する。
シミュレーションされた非線形力学系,リカレントニューラルネットワーク,および霊長類および歯列類からの実験的単一ニューロン記録において,創発的低次元潜伏表現が発見された。
これらの表現はニューラルネットワークや動物間で一貫性があり、認知計算の堅牢な比較を可能にする。
論文 参考訳(メタデータ) (2023-04-06T21:11:04Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Learning Fine Scale Dynamics from Coarse Observations via Inner
Recurrence [0.0]
最近の研究は、ディープニューラルネットワーク(DNN)による未知のシステムの進化に関するデータ駆動学習に焦点を当てている。
本稿では,このような粗い観測データから微細な力学を学習するための計算手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T20:28:52Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
グラフ構造を持つ多エージェント動的システムをモデル化するための潜在常微分方程式生成モデルLG-ODEを提案する。
高次元軌跡の埋め込みと連続潜伏系力学を同時に学習することができる。
我々のモデルは、教師なしの方法で初期状態を推論できるグラフニューラルネットワークによってパラメータ化された新しいエンコーダを採用している。
論文 参考訳(メタデータ) (2020-11-08T01:02:22Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。