論文の概要: RaTEScore: A Metric for Radiology Report Generation
- arxiv url: http://arxiv.org/abs/2406.16845v2
- Date: Wed, 23 Oct 2024 12:53:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:05.600633
- Title: RaTEScore: A Metric for Radiology Report Generation
- Title(参考訳): RaTEScore: 放射線学レポート生成のためのメトリクス
- Authors: Weike Zhao, Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, Weidi Xie,
- Abstract要約: 本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
- 参考スコア(独自算出の注目度): 59.37561810438641
- License:
- Abstract: This paper introduces a novel, entity-aware metric, termed as Radiological Report (Text) Evaluation (RaTEScore), to assess the quality of medical reports generated by AI models. RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions. Technically, we developed a comprehensive medical NER dataset, RaTE-NER, and trained an NER model specifically for this purpose. This model enables the decomposition of complex radiological reports into constituent medical entities. The metric itself is derived by comparing the similarity of entity embeddings, obtained from a language model, based on their types and relevance to clinical significance. Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
- Abstract(参考訳): 本稿では,Radiological Report (Text) Evaluation (RaTEScore) と呼ばれる,AIモデルによる医療報告の質を評価するための新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
技術的には、包括的医療用NERデータセットであるRaTE-NERを開発し、この目的でNERモデルを訓練した。
このモデルにより、複雑な放射線学的報告を構成医療機関に分解することができる。
計量そのものは、言語モデルから得られたエンティティ埋め込みの類似性を比較し、それらのタイプと臨床的意義との関連性に基づいて導かれる。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
関連論文リスト
- Image-aware Evaluation of Generated Medical Reports [11.190146577567548]
本稿では,X線画像から自動医療報告を生成するための新しい評価基準であるVLScoreを提案する。
測定基準の主な考え方は、対応する画像を考慮して、放射線学報告の類似度を測定することである。
我々は, 放射線学者が2対の報告で誤りを指摘し, 放射線学者の判断と顕著な一致を示したデータセットを用いた評価により, 測定値の利点を実証した。
論文 参考訳(メタデータ) (2024-10-22T18:50:20Z) - MRScore: Evaluating Radiology Report Generation with LLM-based Reward System [39.54237580336297]
本稿では,Large Language Models (LLMs) を利用した放射線学レポート生成のための自動評価指標 MRScore を紹介する。
この課題に対処するため,我々は放射線学者と共同で,放射線学報告評価のためのLCMをガイドするフレームワークを開発し,ヒト分析との整合性を確保した。
実験では,MSScoreが人間の判断と高い相関性を示し,従来の指標と比較して,モデル選択における優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-27T04:42:45Z) - Semantic Textual Similarity Assessment in Chest X-ray Reports Using a
Domain-Specific Cosine-Based Metric [1.7802147489386628]
本稿では,生成医療報告と基礎的真実とのセマンティックな類似性を評価するための新しいアプローチを提案する。
本手法の有効性を検証し,医学的文脈におけるドメイン固有の意味的類似性を評価する。
論文 参考訳(メタデータ) (2024-02-19T07:48:25Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Multilingual Natural Language Processing Model for Radiology Reports --
The Summary is all you need! [2.4910932804601855]
マルチリンガルテキスト・トゥ・テキスト・トランスフォーマに基づくモデルを微調整することで、放射線学印象の生成を自動化した。
ブラインドテストでは、2人の放射線学者が、システム生成サマリーのうち少なくとも70%は、品質が対応する人文サマリーと一致または上回っていることを示した。
本研究は,複数の言語モデルにおいて,放射線学レポートの要約に特化している他のモデルと,特に放射線学レポートの要約に特化していないモデルとを比較検討した。
論文 参考訳(メタデータ) (2023-09-29T19:20:27Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。