論文の概要: Image-aware Evaluation of Generated Medical Reports
- arxiv url: http://arxiv.org/abs/2410.17357v1
- Date: Tue, 22 Oct 2024 18:50:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:55:57.348745
- Title: Image-aware Evaluation of Generated Medical Reports
- Title(参考訳): 医療報告の画像認識による評価
- Authors: Gefen Dawidowicz, Elad Hirsch, Ayellet Tal,
- Abstract要約: 本稿では,X線画像から自動医療報告を生成するための新しい評価基準であるVLScoreを提案する。
測定基準の主な考え方は、対応する画像を考慮して、放射線学報告の類似度を測定することである。
我々は, 放射線学者が2対の報告で誤りを指摘し, 放射線学者の判断と顕著な一致を示したデータセットを用いた評価により, 測定値の利点を実証した。
- 参考スコア(独自算出の注目度): 11.190146577567548
- License:
- Abstract: The paper proposes a novel evaluation metric for automatic medical report generation from X-ray images, VLScore. It aims to overcome the limitations of existing evaluation methods, which either focus solely on textual similarities, ignoring clinical aspects, or concentrate only on a single clinical aspect, the pathology, neglecting all other factors. The key idea of our metric is to measure the similarity between radiology reports while considering the corresponding image. We demonstrate the benefit of our metric through evaluation on a dataset where radiologists marked errors in pairs of reports, showing notable alignment with radiologists' judgments. In addition, we provide a new dataset for evaluating metrics. This dataset includes well-designed perturbations that distinguish between significant modifications (e.g., removal of a diagnosis) and insignificant ones. It highlights the weaknesses in current evaluation metrics and provides a clear framework for analysis.
- Abstract(参考訳): 本稿では,X線画像から自動医療報告を生成するための新しい評価基準,VLScoreを提案する。
既存の評価手法の限界を克服することを目的としており、テキストの類似性のみに焦点をあて、臨床的側面を無視したり、単一の臨床的側面、病理的側面のみに焦点を絞ったり、他のすべての要因を無視したりすることを目的としている。
測定基準の主な考え方は,対応する画像を考慮して,放射線学報告の類似度を測定することである。
我々は, 放射線学者が2対の報告で誤りを指摘し, 放射線学者の判断と顕著な一致を示したデータセットを用いた評価により, 測定値の利点を実証した。
さらに、メトリクスを評価するための新しいデータセットも提供します。
このデータセットには、重要な修正(例えば、診断の除去)と重要な変更を区別する、よく設計された摂動が含まれている。
現在の評価指標の弱点を強調し、分析のための明確なフレームワークを提供する。
関連論文リスト
- RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - Radiology-Aware Model-Based Evaluation Metric for Report Generation [5.168471027680258]
提案手法は,放射線学領域に適応したCOMETアーキテクチャを用いて,機械による放射線学レポートの自動評価手法を提案する。
我々は、放射線学知識グラフであるRadGraphでトレーニングされた4つの医学的指向のモデルチェックポイントをトレーニングし、公開する。
以上の結果から,BERTscore,BLEU,CheXbertのスコアと中程度の相関が得られた。
論文 参考訳(メタデータ) (2023-11-28T13:08:26Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Robust Detection Outcome: A Metric for Pathology Detection in Medical
Images [6.667150890634173]
ロバスト検出アウトカム(RoDeO)は、医学画像における病理診断アルゴリズムを評価するための新しい指標である。
RoDeOは、個々のエラーを直接評価し、現在のメトリクスよりも臨床ニーズを反映する。
論文 参考訳(メタデータ) (2023-03-03T13:45:13Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
平均平均精度(mAP)は、異なる種類の音をそれらの関係を考慮せずに独立したクラスとして扱う。
オントロジー認識平均平均精度(OmAP)は、評価中にAudioSetオントロジー情報を利用することで、mAPの弱点に対処する。
我々は人間の評価を行い、OmAPはmAPよりも人間の知覚と一致していることを示した。
論文 参考訳(メタデータ) (2022-11-22T11:35:14Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
放射線画像から記述テキストを自動的に生成することを目的とした放射線学レポート生成。
典型的な設定は、エンコーダとデコーダのモデルを、クロスエントロピー損失のあるイメージレポートペアでトレーニングする。
本稿では,医療報告生成におけるコントラスト損失の弱化について提案する。
論文 参考訳(メタデータ) (2021-09-25T00:06:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。