論文の概要: Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection
- arxiv url: http://arxiv.org/abs/2406.16908v1
- Date: Tue, 4 Jun 2024 10:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:41:31.109000
- Title: Using Explainable AI for EEG-based Reduced Montage Neonatal Seizure Detection
- Title(参考訳): 説明可能なAIを用いた脳波を用いた低分子量モンタージュ新生児静注検出
- Authors: Dinuka Sandun Udayantha, Kavindu Weerasinghe, Nima Wickramasinghe, Akila Abeyratne, Kithmin Wickremasinghe, Jithangi Wanigasinghe, Anjula De Silva, Chamira Edussooriya,
- Abstract要約: 新生児発作検出のゴールドスタンダードは、現在連続したビデオEEGモニタリングに依存している。
脳波モンタージュを低減した新生児発作検出プロセスを自動化するための新しい説明可能な深層学習モデルを提案する。
提案したモデルは、それぞれ曲線下面積(AUC)とリコールにおける8.31%と42.86%の絶対的な改善を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neonatal period is the most vulnerable time for the development of seizures. Seizures in the immature brain lead to detrimental consequences, therefore require early diagnosis. The gold-standard for neonatal seizure detection currently relies on continuous video-EEG monitoring; which involves recording multi-channel electroencephalogram (EEG) alongside real-time video monitoring within a neonatal intensive care unit (NICU). However, video-EEG monitoring technology requires clinical expertise and is often limited to technologically advanced and resourceful settings. Cost-effective new techniques could help the medical fraternity make an accurate diagnosis and advocate treatment without delay. In this work, a novel explainable deep learning model to automate the neonatal seizure detection process with a reduced EEG montage is proposed, which employs convolutional nets, graph attention layers, and fully connected layers. Beyond its ability to detect seizures in real-time with a reduced montage, this model offers the unique advantage of real-time interpretability. By evaluating the performance on the Zenodo dataset with 10-fold cross-validation, the presented model achieves an absolute improvement of 8.31% and 42.86% in area under curve (AUC) and recall, respectively.
- Abstract(参考訳): 新生児期は発作発生の最も脆弱な時期である。
未熟な脳の青斑は有害な結果をもたらすため、早期診断が必要である。
現在、新生児発作検出のゴールドスタンダードは、新生児集中治療室(NICU)内でのリアルタイムビデオモニタリングと並行して、多チャンネル脳波(EEG)を記録することを含む、連続的なビデオEEGモニタリングに依存している。
しかし、ビデオEEGモニタリング技術は臨床専門知識を必要としており、技術的に高度で資源に富んだ設定に限られることが多い。
費用対効果の高い新しい技術は、医療の友愛会が正確な診断を行い、遅滞なく治療を提唱するのに役立つ。
本研究では, 畳み込み網, グラフアテンション層, および完全連結層を用いて, 脳波モンタージュを低減した新生児発作検出プロセスを自動化する新しいディープラーニングモデルを提案する。
モンタージュを減らしてリアルタイムに発作を検出する能力に加えて、このモデルはリアルタイムの解釈可能性の独特な利点を提供する。
10倍のクロスバリデーションでZenodoデータセットの性能を評価することにより,曲線下面積(AUC)とリコールにおける絶対的な改善率8.31%と42.86%を達成した。
関連論文リスト
- SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
本研究では,脳波データからてんかん発作を検出するための半教師付きアプローチを提案する。
以上の結果から,SncVAEは脳波データにおける発作検出を改善し,早期発作の早期発見と術後経過のモニタリングが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-06-25T13:21:01Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Protecting the Future: Neonatal Seizure Detection with Spatial-Temporal
Modeling [21.955397001414187]
本稿では,時間的,空間的,モデルレベルでの厳密な設計による排他的課題に対処する深層学習フレームワークSTATENetを提案する。
実世界の大規模新生児脳波データセットに対する実験により,我々のフレームワークは発作検出性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2023-07-02T14:28:12Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - Scalable Machine Learning Architecture for Neonatal Seizure Detection on
Ultra-Edge Devices [0.0]
本研究では,機械学習(ML)に基づくアーキテクチャを提案する。
本研究で選択した標準MLモデルよりも6%高い87%の感度を達成した。
論文 参考訳(メタデータ) (2021-11-29T12:42:13Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
現在のアーティファクト検出パイプラインはリソース不足であり、手作りの機能に大きく依存している。
高周波脳波アーチファクト検出のためのディープラーニングフレームワークであるE4Gを提案する。
われわれのフレームワークは初期の出口パラダイムを利用して、不確実性を捉えることのできるモデルの暗黙のアンサンブルを構築している。
論文 参考訳(メタデータ) (2021-07-21T07:05:42Z) - An interpretable object detection based model for the diagnosis of
neonatal lung diseases using Ultrasound images [0.0]
肺超音波(LUS)は新生児のさまざまな肺疾患の診断とモニタリングにますます利用されている。
異なる呼吸器疾患で見られる混合アーティファクトパターンは、オペレーターによるLUS可読性を制限する可能性がある。
そこで本研究では,特定の肺疾患と容易に関連付けることのできる7つの意義あるLUS特徴を抽出するためのユニークなアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-21T01:12:35Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
本稿では,1分間の刺激映像から抽出した画像を用いた視線予測のための畳み込みニューラルネットワーク(CNN)アルゴリズムを提案する。
本モデルでは,被検者の視線方向の予測に高い精度とロバスト性を実現した。
論文 参考訳(メタデータ) (2020-07-28T18:47:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。