論文の概要: Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning
- arxiv url: http://arxiv.org/abs/2406.16926v1
- Date: Wed, 12 Jun 2024 07:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:31:46.720748
- Title: Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning
- Title(参考訳): ファシック画像表現学習に基づくディープラーニングによるウェアラブル型リアルタイムグルコースモニタリングの強化
- Authors: Yidong Zhu, Nadia B Aimandi, Mohammad Arif Ul Alam,
- Abstract要約: 米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
既存のウェアラブルグルコースモニターは、小さなデータセットでトレーニングされたモデルの不足によって制限されている。
- 参考スコア(独自算出の注目度): 4.07484910093752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the U.S., over a third of adults are pre-diabetic, with 80\% unaware of their status. This underlines the need for better glucose monitoring to prevent type 2 diabetes and related heart diseases. Existing wearable glucose monitors are limited by the lack of models trained on small datasets, as collecting extensive glucose data is often costly and impractical. Our study introduces a novel machine learning method using modified recurrence plots in the frequency domain to improve glucose level prediction accuracy from wearable device data, even with limited datasets. This technique combines advanced signal processing with machine learning to extract more meaningful features. We tested our method against existing models using historical data, showing that our approach surpasses the current 87\% accuracy benchmark in predicting real-time interstitial glucose levels.
- Abstract(参考訳): 米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
これにより、2型糖尿病と関連する心臓疾患を予防するために、より良いグルコースモニタリングの必要性が弱まる。
既存のウェアラブルグルコースモニターは、小さなデータセットで訓練されたモデルの欠如によって制限されている。
本研究では, 限られたデータセットであっても, ウェアラブルデバイスデータからのグルコースレベルの予測精度を向上させるために, 周波数領域における修正繰り返しプロットを用いた新しい機械学習手法を提案する。
この技術は、高度な信号処理と機械学習を組み合わせて、より意味のある特徴を抽出する。
提案手法を過去のデータを用いて既存モデルと比較し, リアルタイム間質性グルコース濃度の予測において, 現在の87%の精度ベンチマークを超えていることを示した。
関連論文リスト
- Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNetは、行動と生理の健康を継続的に監視するAI駆動のセンサーシステムである。
本稿では,患者の行動・生理的データを組み込んだ分解型トランスフォーマーモデルを提案する。
GGlucoNetは、T1-Diabetesの12人を含むデータを用いて、RMSEの60%の改善とパラメータ数の21%削減を実現している。
論文 参考訳(メタデータ) (2024-11-16T05:09:20Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
糖尿病は世界中で何百万人もの人々の健康を損なう慢性疾患である。
そこで本研究では,非侵襲性光胸腺撮影による糖尿病検出の問題点を克服する別の方法を提案する。
PPG信号とアルゴリズムを用いて非糖尿病患者と糖尿病患者を分類し,ロジスティック回帰とeXtreme Gradient Boostingを訓練した。
以上の結果から,糖尿病の検出・予防のための遠隔・非侵襲・連続計測装置の開発に機械学習が期待できることが示唆された。
論文 参考訳(メタデータ) (2023-08-02T14:10:03Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
本研究は,血糖値の今後の変動を予測することを目的としており,血糖値の低下が予想される可能性がある。
提案手法は, 有望な結果を得た4種類の糖尿病患者の実データを用いて検討した。
論文 参考訳(メタデータ) (2023-03-30T09:08:31Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
我々は、高度LIGO検出器のデータから過渡ノイズ信号(グリッチ)と重力波を分類する。
どちらも、Gravity Spyデータセットを使用して、スクラッチからトレーニングされた、教師付き学習アプローチのモデルを使用します。
また、擬似ラベルの自動生成による事前学習モデルの自己教師型アプローチについても検討する。
論文 参考訳(メタデータ) (2023-03-24T11:12:37Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Deep Personalized Glucose Level Forecasting Using Attention-based
Recurrent Neural Networks [5.250950284616893]
本研究では,血糖予測の問題点について検討し,深いパーソナライズド・ソリューションを提供する。
データを解析し、重要なパターンを検出する。
実データセット上でモデルの有効性を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T01:36:53Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。