論文の概要: Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning
- arxiv url: http://arxiv.org/abs/2303.17616v1
- Date: Thu, 30 Mar 2023 09:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 16:22:50.992563
- Title: Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning
- Title(参考訳): ドメイン変換とディープラーニングによるグルコース時系列のパターン検出
- Authors: J. Alvarado, J. Manuel Velasco, F. Ch\'avez, J.Ignacio Hidalgo, F.
Fern\'andez de Vega
- Abstract要約: 本研究は,血糖値の今後の変動を予測することを目的としており,血糖値の低下が予想される可能性がある。
提案手法は, 有望な結果を得た4種類の糖尿病患者の実データを用いて検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: People with diabetes have to manage their blood glucose level to keep it
within an appropriate range. Predicting whether future glucose values will be
outside the healthy threshold is of vital importance in order to take
corrective actions to avoid potential health damage. In this paper we describe
our research with the aim of predicting the future behavior of blood glucose
levels, so that hypoglycemic events may be anticipated. The approach of this
work is the application of transformation functions on glucose time series, and
their use in convolutional neural networks. We have tested our proposed method
using real data from 4 different diabetes patients with promising results.
- Abstract(参考訳): 糖尿病患者は血糖値を適切な範囲に保つために管理しなければならない。
将来のグルコース値が健康な閾値外になるかどうかを予測することは、健康被害を避けるための修正措置を取る上で極めて重要である。
本稿では,血糖値の将来的な挙動を予測し,血糖値低下の事象を予知することを目的とした。
この研究のアプローチは、グルコース時系列への変換関数の適用と畳み込みニューラルネットワークにおける利用である。
提案手法は,4種類の糖尿病患者の実データを用いて有望な結果を得た。
関連論文リスト
- Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
高血糖(糖尿病)、高脂血症、高血圧(総称3H)を独自の行動データを用いて診断することを目的としている。
論文 参考訳(メタデータ) (2024-10-04T12:52:49Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Enhancing Wearable based Real-Time Glucose Monitoring via Phasic Image Representation Learning based Deep Learning [4.07484910093752]
米国では、成人の3分の1以上がプレ糖尿病であり、80%は彼らの状態に気づいていない。
既存のウェアラブルグルコースモニターは、小さなデータセットでトレーニングされたモデルの不足によって制限されている。
論文 参考訳(メタデータ) (2024-06-12T07:05:53Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGluは、CGM時系列データに基づく短期的なグルコース予測のためのエンドツーエンドパイプラインである。
患者の個人データを追加することなく、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-18T06:02:12Z) - CrossGP: Cross-Day Glucose Prediction Excluding Physiological Information [4.975538965305628]
糖尿病患者の早期血糖予測は、タイムリーな治療に必要である。
そこで我々は,クロスデイグルコース予測のための新しい機械学習フレームワークであるCrossGPを提案する。
論文 参考訳(メタデータ) (2024-04-16T20:40:59Z) - Learning Difference Equations with Structured Grammatical Evolution for
Postprandial Glycaemia Prediction [0.0]
グルコース予測は、糖尿病患者の治療において、食事後の危険な合併症を避けるために不可欠である。
ニューラルネットワークのような従来の手法は高い精度を示している。
本稿では,解釈可能性を重視した新しいグルコース予測法を提案する。
論文 参考訳(メタデータ) (2023-07-03T12:22:04Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
本研究では,多数の異なるスキャンサイトと,各サイト毎のサンプル数に対処可能な予測手法を提案する。
以上の結果より,初診後48週,12週間の肝疾患経過観察の結果から,聴力低下の予測精度が向上した。
論文 参考訳(メタデータ) (2021-11-15T09:40:54Z) - Sickle Cell Disease Severity Prediction from Percoll Gradient Images
using Graph Convolutional Networks [38.27767684024691]
シックル細胞病(Sickle cell disease, SCD)は、赤血球の早期破壊を引き起こす重篤な遺伝性ヘモグロビン疾患である。
提案手法は,SCD重大度予測の難問に対する最初の計算手法である。
論文 参考訳(メタデータ) (2021-09-11T21:09:50Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
マルチセンター糖尿病予測タスクにTSGB(Task-wise Split Gradient Boosting Trees)を提案する。
TSGBはいくつかの最先端手法に対して優れた性能を発揮する。
TSGB法は早期診断のためのオンライン糖尿病リスク評価ソフトウェアとして展開されている。
論文 参考訳(メタデータ) (2021-08-16T14:22:44Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
糖尿病は慢性疾患であり、早期に疾患の検出を複雑にする長い潜伏期間を有する。
本稿では,グルコース濃度の時間変化の微妙な変化を機械学習で検出することを提案する。
多層パーセプトロン、畳み込みニューラルネットワーク、および繰り返しニューラルネットワークはいずれも85%以上の精度でインスリン抵抗の程度を同定した。
論文 参考訳(メタデータ) (2020-05-18T13:31:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。