論文の概要: EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing
- arxiv url: http://arxiv.org/abs/2406.16943v1
- Date: Tue, 18 Jun 2024 12:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:21:45.779912
- Title: EarDA: Towards Accurate and Data-Efficient Earable Activity Sensing
- Title(参考訳): EarDA: 正確でデータ効率のよい活動センシングを目指して
- Authors: Shengzhe Lyu, Yongliang Chen, Di Duan, Renqi Jia, Weitao Xu,
- Abstract要約: 測定可能なデバイスは振幅やパターンに大きな変化を示し、特に動的で予測不能な頭部運動の存在下では顕著である。
本稿では,異なるセンサ位置をまたいだドメインに依存しない特徴を抽出するドメイン適応システムであるEarDAを提案する。
ヒューマンアクティビティ認識タスクでは88.8%の精度を達成し、ドメイン適応のないメソッドよりも43%改善した。
- 参考スコア(独自算出の注目度): 3.3690293278790415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of smart sensing with the Internet of Things, earable devices are empowered with the capability of multi-modality sensing and intelligence of context-aware computing, leading to its wide usage in Human Activity Recognition (HAR). Nonetheless, unlike the movements captured by Inertial Measurement Unit (IMU) sensors placed on the upper or lower body, those motion signals obtained from earable devices show significant changes in amplitudes and patterns, especially in the presence of dynamic and unpredictable head movements, posing a significant challenge for activity classification. In this work, we present EarDA, an adversarial-based domain adaptation system to extract the domain-independent features across different sensor locations. Moreover, while most deep learning methods commonly rely on training with substantial amounts of labeled data to offer good accuracy, the proposed scheme can release the potential usage of publicly available smartphone-based IMU datasets. Furthermore, we explore the feasibility of applying a filter-based data processing method to mitigate the impact of head movement. EarDA, the proposed system, enables more data-efficient and accurate activity sensing. It achieves an accuracy of 88.8% under HAR task, demonstrating a significant 43% improvement over methods without domain adaptation. This clearly showcases its effectiveness in mitigating domain gaps.
- Abstract(参考訳): モノのインターネット(Internet of Things)によるスマートセンシングの分野では、多モードセンシングとコンテキスト認識コンピューティングのインテリジェンスによって、耳に装着可能なデバイスに権限が与えられ、ヒューマンアクティビティ認識(HAR)で広く利用されている。
それにもかかわらず、上または下半身に配置された慣性計測ユニット(IMU)センサーが捉えた運動とは異なり、これらの運動信号は、特に動的で予測不能な頭部運動の存在下で、振幅やパターンに顕著な変化を示し、活動分類において重要な課題となっている。
本研究では,異なるセンサ位置をまたいだドメインに依存しない特徴を抽出するドメイン適応システムであるEarDAを提案する。
さらに,多くのディープラーニング手法では,大量のラベル付きデータを用いたトレーニングによって精度が向上するのに対して,提案手法では,スマートフォンベースのIMUデータセットの潜在的使用可能性を公開することができる。
さらに,頭部運動の影響を軽減するため,フィルタに基づくデータ処理手法の適用の可能性を検討する。
提案システムであるEarDAは、よりデータ効率が高く、正確なアクティビティセンシングを可能にする。
HARタスクの精度は88.8%で、ドメイン適応のないメソッドよりも43%向上している。
これは明らかにドメインギャップを緩和する効果を示している。
関連論文リスト
- Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
高価なブラックボックス関数のグローバル感度解析におけるアクティブラーニングの問題点を考察する。
関数評価は高価であるため,最も価値の高い実験資源の優先順位付けにアクティブラーニングを利用する。
本稿では,デリバティブに基づくグローバル感度測定の重要量を直接対象とする,新たな能動的学習獲得関数を提案する。
論文 参考訳(メタデータ) (2024-07-13T01:41:12Z) - Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
HAR(Human Activity Recognition)は、ディープラーニングの普及に大きく貢献していない。
本稿では,センサをベースとしたウェアラブル型HARに対して,ポーズ・ツー・センサ・ネットワークモデルを導入することにより,新たなアプローチを提案する。
コントリビューションには、同時トレーニングの統合、直接ポーズ・ツー・センサ生成、MM-Fitデータセットの包括的な評価が含まれる。
論文 参考訳(メタデータ) (2024-04-25T10:13:18Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
スマートホームにおけるヒューマンアクティビティ認識(HAR)のためのグラフ誘導ニューラルネットワーク手法を提案する。
スマートホームにおけるセンサネットワークを表す,より表現力のあるグラフ構造を学習することで,これを実現する。
本手法は,アテンション機構の適用により,個別の入力センサ計測を特徴空間にマッピングする。
論文 参考訳(メタデータ) (2023-11-16T02:43:13Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
本稿では,TASKED(Self-KnowledgE Distillation)を用いたウェアラブルセンサを用いた,トランスフォーマーに基づく人間行動認識のための新しい逆学習フレームワークを提案する。
提案手法では,教師なしの自己知識蒸留を採用し,訓練手順の安定性と人間の活動認識性能を向上させる。
論文 参考訳(メタデータ) (2022-09-14T11:08:48Z) - DAPPER: Label-Free Performance Estimation after Personalization for
Heterogeneous Mobile Sensing [95.18236298557721]
DAPPER(Domain AdaPtation Performance EstimatoR)を提案する。
実世界の6つのベースラインと比較した4つのセンシングデータセットによる評価の結果,DAPPERの精度は39.8%向上した。
論文 参考訳(メタデータ) (2021-11-22T08:49:33Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Sensor Data for Human Activity Recognition: Feature Representation and
Benchmarking [27.061240686613182]
HAR(Human Activity Recognition)の分野は、監視装置(センサなど)から取得したデータを取得し、分析することに焦点を当てている。
我々は、異なる機械学習(ML)技術を用いて、人間のアクティビティを正確に認識する問題に対処する。
論文 参考訳(メタデータ) (2020-05-15T00:46:55Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
センサに基づくヒューマンアクティビティ認識(HAR)は、現在、複数のアプリケーション領域で研究ホットスポットとなっている。
本研究では,実シーンにおける複雑なHARの深層学習に基づく新しい手法を提案する。
提案手法は驚くほど数イテレーションで収束し、実際のIMUデータセット上で91.15%の精度が得られる。
論文 参考訳(メタデータ) (2020-03-04T03:31:23Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。