論文の概要: CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors
- arxiv url: http://arxiv.org/abs/2503.02853v1
- Date: Tue, 04 Mar 2025 18:29:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:15:00.922251
- Title: CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors
- Title(参考訳): CADDI:低コストセンサのIMUデータを用いたクラス内アクティビティ検出データセット
- Authors: Luis Marquez-Carpintero, Sergio Suescun-Ferrandiz, Monica Pina-Navarro, Miguel Cazorla, Francisco Gomez-Donoso,
- Abstract要約: 安価なIMUセンサを用いたクラス内アクティビティ検出のための新しいデータセットを提案する。
データセットは、典型的な教室のシナリオで12人の参加者が実行した、瞬間的および連続的な19の多様なアクティビティで構成されている。
加速度計、ジャイロスコープ、回転ベクトルデータ、および同期ステレオ画像を含み、センサーと視覚データを用いたマルチモーダルアルゴリズムを開発するための包括的なリソースを提供する。
- 参考スコア(独自算出の注目度): 3.3860149185538613
- License:
- Abstract: The monitoring and prediction of in-class student activities is of paramount importance for the comprehension of engagement and the enhancement of pedagogical efficacy. The accurate detection of these activities enables educators to modify their lessons in real time, thereby reducing negative emotional states and enhancing the overall learning experience. To this end, the use of non-intrusive devices, such as inertial measurement units (IMUs) embedded in smartwatches, represents a viable solution. The development of reliable predictive systems has been limited by the lack of large, labeled datasets in education. To bridge this gap, we present a novel dataset for in-class activity detection using affordable IMU sensors. The dataset comprises 19 diverse activities, both instantaneous and continuous, performed by 12 participants in typical classroom scenarios. It includes accelerometer, gyroscope, rotation vector data, and synchronized stereo images, offering a comprehensive resource for developing multimodal algorithms using sensor and visual data. This dataset represents a key step toward scalable solutions for activity recognition in educational settings.
- Abstract(参考訳): 授業中の学生活動のモニタリングと予測は、エンゲージメントの理解と教育効果の向上に最重要となる。
これらの活動の正確な検出により、教育者はリアルタイムで授業を変更でき、それによってネガティブな感情状態が減少し、全体的な学習経験が向上する。
この目的のために、スマートウォッチに埋め込まれた慣性測定ユニット(IMU)のような非侵入的デバイスの使用は、実現可能な解決策である。
信頼性のある予測システムの開発は、教育における大きなラベル付きデータセットの欠如によって制限されてきた。
このギャップを埋めるために、安価なIMUセンサを用いたクラス内アクティビティ検出のための新しいデータセットを提案する。
データセットは、典型的な教室のシナリオで12人の参加者が実行した、瞬間的および連続的な19の多様なアクティビティで構成されている。
加速度計、ジャイロスコープ、回転ベクトルデータ、および同期ステレオ画像を含み、センサーと視覚データを用いたマルチモーダルアルゴリズムを開発するための包括的なリソースを提供する。
このデータセットは、教育環境におけるアクティビティ認識のためのスケーラブルなソリューションへの重要なステップである。
関連論文リスト
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
HAR(Human Activity Recognition)は、ディープラーニングの普及に大きく貢献していない。
本稿では,センサをベースとしたウェアラブル型HARに対して,ポーズ・ツー・センサ・ネットワークモデルを導入することにより,新たなアプローチを提案する。
コントリビューションには、同時トレーニングの統合、直接ポーズ・ツー・センサ生成、MM-Fitデータセットの包括的な評価が含まれる。
論文 参考訳(メタデータ) (2024-04-25T10:13:18Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
本稿では,HARデータセットを有効な転送学習に利用するための経済的なアプローチを提案する。
本稿では,教師が学習する自己学習パラダイムに則って,新たな伝達学習フレームワークであるクロスドメインHARを紹介する。
本手法の有効性を,撮影活動認識のシナリオで実証する。
論文 参考訳(メタデータ) (2023-10-22T19:13:25Z) - Towards Continual Egocentric Activity Recognition: A Multi-modal
Egocentric Activity Dataset for Continual Learning [21.68009790164824]
UESTC-MMEA-CLという連続学習のためのマルチモーダル・エゴセントリックな活動データセットを提案する。
ビデオ、加速度計、ジャイロスコープの同期データを含み、32種類の日常活動が10人の参加者によって行われる。
RGB, 加速度, ジャイロスコープの3つのモードを別々に使用した場合に, エゴセントリックな活動認識の結果が報告される。
論文 参考訳(メタデータ) (2023-01-26T04:32:00Z) - Large Scale Real-World Multi-Person Tracking [68.27438015329807]
本稿では,新しい大規模多人数追跡データセットであるtexttPersonPath22を提案する。
MOT17、HiEve、MOT20などの高品質なマルチオブジェクト追跡データセットよりも桁違いに大きい。
論文 参考訳(メタデータ) (2022-11-03T23:03:13Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
日常生活活動の指標 (ADL) は, 健康の指標として重要であるが, 生体内測定は困難である。
本稿では,加速度センサデータの頑健な表現をデバイスや対象に対して一般化するための自己教師付き学習パラダイムを提案する。
また,連続した実生活データに対して,有意な活動のセグメントを同定し,HARの精度を高めるセグメンテーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T23:35:20Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
センサに基づくヒューマンアクティビティ認識(HAR)は、現在、複数のアプリケーション領域で研究ホットスポットとなっている。
本研究では,実シーンにおける複雑なHARの深層学習に基づく新しい手法を提案する。
提案手法は驚くほど数イテレーションで収束し、実際のIMUデータセット上で91.15%の精度が得られる。
論文 参考訳(メタデータ) (2020-03-04T03:31:23Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。