Energy-Efficient Seizure Detection Suitable for low-power Applications
- URL: http://arxiv.org/abs/2406.16948v1
- Date: Wed, 19 Jun 2024 11:36:29 GMT
- Title: Energy-Efficient Seizure Detection Suitable for low-power Applications
- Authors: Julia Werner, Bhavya Kohli, Paul Palomero Bernardo, Christoph Gerum, Oliver Bringmann,
- Abstract summary: Epilepsy is the most common, chronic, neurological disease worldwide.
Neuro implants can be used for effective treatment by suppressing an upcoming seizure upon detection.
We present an energy-efficient seizure detection approach involving a TC-ResNet and time-series analysis.
- Score: 0.5326090003728084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epilepsy is the most common, chronic, neurological disease worldwide and is typically accompanied by reoccurring seizures. Neuro implants can be used for effective treatment by suppressing an upcoming seizure upon detection. Due to the restricted size and limited battery lifetime of those medical devices, the employed approach also needs to be limited in size and have low energy requirements. We present an energy-efficient seizure detection approach involving a TC-ResNet and time-series analysis which is suitable for low-power edge devices. The presented approach allows for accurate seizure detection without preceding feature extraction while considering the stringent hardware requirements of neural implants. The approach is validated using the CHB-MIT Scalp EEG Database with a 32-bit floating point model and a hardware suitable 4-bit fixed point model. The presented method achieves an accuracy of 95.28%, a sensitivity of 92.34% and an AUC score of 0.9384 on this dataset with 4-bit fixed point representation. Furthermore, the power consumption of the model is measured with the low-power AI accelerator UltraTrail, which only requires 495 nW on average. Due to this low-power consumption this classification approach is suitable for real-time seizure detection on low-power wearable devices such as neural implants.
Related papers
- Real-time Sub-milliwatt Epilepsy Detection Implemented on a Spiking Neural Network Edge Inference Processor [5.021433741823472]
This study aims to detect interictal and ictal periods of epileptic seizures using a spiking neural network (SNN)
Our proposed method has a high test accuracy of 93.3% and 92.9% when classifying ictal and interictal periods.
Our work provides a new solution for seizure detection, and it is expected to be widely used in portable and wearable devices in the future.
arXiv Detail & Related papers (2024-10-22T01:55:02Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments.
We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset.
Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task.
arXiv Detail & Related papers (2024-01-21T19:23:56Z) - EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded
Systems [9.525786920713763]
This paper introduces EpiDeNet, a new lightweight seizure detection network.
Sensitivity-Specificity Weighted Cross-Entropy (SSWCE) is a new loss function that incorporates sensitivity and specificity.
A three-window majority voting-based smoothing scheme combined with the SSWCE loss achieves 3x reduction of false positives to 1.18 FP/h.
arXiv Detail & Related papers (2023-08-28T11:29:51Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
In epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency.
In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform.
arXiv Detail & Related papers (2022-04-19T12:57:26Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - BottleFit: Learning Compressed Representations in Deep Neural Networks
for Effective and Efficient Split Computing [48.11023234245863]
We propose a new framework called BottleFit, which includes a novel training strategy to achieve high accuracy even with strong compression rates.
BottleFit achieves 77.1% data compression with up to 0.6% accuracy loss on ImageNet dataset.
We show that BottleFit decreases power consumption and latency respectively by up to 49% and 89% with respect to (w.r.t.) local computing and by 37% and 55% w.r.t. edge offloading.
arXiv Detail & Related papers (2022-01-07T22:08:07Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG
Devices [11.622034020961912]
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform.
We analyze global and subject-specific approaches, considering all 23-electrodes or only 4 temporal channels.
For 8s window size and subject-specific approach, we report zero false positives and 100% sensitivity.
arXiv Detail & Related papers (2021-06-15T09:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.