論文の概要: Efficient Evolutionary Search Over Chemical Space with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.16976v2
- Date: Tue, 2 Jul 2024 16:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:39:57.034378
- Title: Efficient Evolutionary Search Over Chemical Space with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた化学空間の効率的な進化探索
- Authors: Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Strieth-Kalthoff, Chenru Duan, Yuchen Zhuang, Yue Yu, Yanqiao Zhu, Yuanqi Du, Alán Aspuru-Guzik, Kirill Neklyudov, Chao Zhang,
- Abstract要約: 最適化の目的は区別できない。
化学対応大規模言語モデル(LLM)を進化的アルゴリズムに導入する。
我々のアルゴリズムは最終解の質と収束速度の両方を改善する。
- 参考スコア(独自算出の注目度): 31.31899988523534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
- Abstract(参考訳): 最適化問題として定式化された分子発見は、最適化目的が微分不可能であるため、重要な計算課題を提示する。
進化的アルゴリズム(EA)は、しばしば分子発見におけるブラックボックスの目的を最適化するために、ランダムな突然変異とクロスオーバーを行い、多くの高価な客観的評価をもたらす。
本研究では,化学を意識した大規模言語モデル(LLM)をEAに組み込むことにより,この欠点を改善する。
すなわち,化学情報の大量コーパスに基づいて学習したLSMを用いて,EAにおけるクロスオーバーと突然変異操作を再設計する。
我々は、資産最適化、分子再分析、構造に基づく薬物設計を含む複数のタスクにおいて、商用およびオープンソースモデルおよびオープンソースモデルの両方について広範な実証研究を行い、LEMとEAを併用することにより、単一および多目的設定における全てのベースラインモデルよりも優れた性能が得られることを示した。
提案アルゴリズムは,最終的な解法の品質と収束速度の両方を改善し,必要な目的評価の回数を減らすことを実証する。
私たちのコードはhttp://github.com/zoom-wang112358/MOLLEOで利用可能です。
関連論文リスト
- Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
変換器を用いた拡散言語モデル(TransDLM)を用いたテキスト誘導多目的分子最適化手法を提案する。
TransDLMは標準化された化学命名法を分子の意味表現として利用し、プロパティ要求をテキスト記述に暗黙的に埋め込む。
提案手法は, 分子構造類似性を最適化し, ベンチマークデータセットの化学的特性を向上するための最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-10-17T14:30:27Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
大規模言語モデル(LLM)は、数ショットのインコンテキスト学習(ICL)において、優れたパフォーマンスを示している。
マルチショットICLで利用可能な実験データの不足を克服する,新しい半教師付き学習手法を開発した。
示すように、この新しい手法は、既存の分子設計のためのICL法を大幅に改善し、科学者にとってアクセスしやすく、使いやすくする。
論文 参考訳(メタデータ) (2024-07-26T21:10:50Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
我々は,制約付き多目的最適化問題に対する進化探索を強化するために,大規模言語モデル(LLM)を用いる。
私たちの目標は、進化の集団の収束を早めることです。
論文 参考訳(メタデータ) (2024-05-09T13:44:04Z) - DrugAssist: A Large Language Model for Molecule Optimization [29.95488215594247]
DrugAssistは、人間と機械の対話を通じて最適化を行う対話型分子最適化モデルである。
DrugAssistは、単一および複数プロパティの最適化において、主要な結果を得た。
分子最適化タスクの微調整言語モデルのための,MomoOpt-Instructionsと呼ばれる大規模命令ベースデータセットを公開している。
論文 参考訳(メタデータ) (2023-12-28T10:46:56Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
本稿では,大言語モデル(LLM)を進化論として初めて研究する。
主な利点は、最小限のドメイン知識と人間の努力が必要であり、モデルに追加のトレーニングは必要ありません。
また,進化探索における自己適応機構の有効性についても検討した。
論文 参考訳(メタデータ) (2023-10-29T15:44:52Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMOは、化学知識の学習と多目的進化探索を組み合わせた多目的分子最適化フレームワークである。
4つの多目的特性と類似性最適化タスクにおけるMOMOの性能を実証し、ケーススタディを通してMOMOの探索能力を示す。
論文 参考訳(メタデータ) (2022-12-17T09:09:23Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Computer-Aided Multi-Objective Optimization in Small Molecule Discovery [3.032184156362992]
多目的分子発見のためのプールベースおよびデノボ生成手法について述べる。
プール型分子発見は,多目的ベイズ最適化の比較的直接的な拡張であることを示す。
この分野で残る課題と機会について論じる。
論文 参考訳(メタデータ) (2022-10-13T17:33:07Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
汎用的なクエリベースの分子最適化フレームワークであるQMOを提案する。
QMOは効率的なクエリに基づいて入力分子の所望の特性を改善する。
QMOは, 有機分子を最適化するベンチマークタスクにおいて, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T18:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。