論文の概要: Research on Disease Prediction Model Construction Based on Computer AI deep Learning Technology
- arxiv url: http://arxiv.org/abs/2406.16982v1
- Date: Sun, 23 Jun 2024 18:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 19:00:25.386211
- Title: Research on Disease Prediction Model Construction Based on Computer AI deep Learning Technology
- Title(参考訳): コンピュータAI深層学習技術に基づく疾患予測モデルの構築に関する研究
- Authors: Yang Lin, Muqing Li, Ziyi Zhu, Yinqiu Feng, Lingxi Xiao, Zexi Chen,
- Abstract要約: 本研究は,ロバスト学習アルゴリズムを研究対象とし,感染リスクの早期警告に適用することを目的とする。
トレーニング損失に対する低境界を構築し, サンプリング率に基づく手法を提案し, トレーニング結果に対するノイズの影響を低減した。
- 参考スコア(独自算出の注目度): 4.438184989650338
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The prediction of disease risk factors can screen vulnerable groups for effective prevention and treatment, so as to reduce their morbidity and mortality. Machine learning has a great demand for high-quality labeling information, and labeling noise in medical big data poses a great challenge to efficient disease risk warning methods. Therefore, this project intends to study the robust learning algorithm and apply it to the early warning of infectious disease risk. A dynamic truncated loss model is proposed, which combines the traditional mutual entropy implicit weight feature with the mean variation feature. It is robust to label noise. A lower bound on training loss is constructed, and a method based on sampling rate is proposed to reduce the gradient of suspected samples to reduce the influence of noise on training results. The effectiveness of this method under different types of noise was verified by using a stroke screening data set as an example. This method enables robust learning of data containing label noise.
- Abstract(参考訳): 病気の危険因子の予測は、予防と治療のために脆弱なグループをスクリーニングし、その死亡率と死亡率を減らすことができる。
機械学習は高品質なラベル付け情報に大きな需要があり、医療用ビッグデータにおけるラベル付けノイズは、病気のリスクを効果的に警告する手法にとって大きな課題となる。
そこで, 本研究は, 頑健な学習アルゴリズムを研究し, 感染リスクの早期警告に適用することを目的としている。
従来の相互エントロピー暗黙的重み特徴と平均変分特徴を組み合わせた動的トラッピング損失モデルを提案する。
騒音をラベル付けるのは頑丈だ。
トレーニング損失に対する低い境界を構築し, サンプリング率に基づく手法を提案し, 被疑試料の勾配を小さくし, ノイズがトレーニング結果に与える影響を低減した。
本手法の有効性を,ストロークスクリーニングデータセットを用いて検証した。
この方法はラベルノイズを含むデータの堅牢な学習を可能にする。
関連論文リスト
- Training Gradient Boosted Decision Trees on Tabular Data Containing Label Noise for Classification Tasks [1.261491746208123]
本研究の目的は,ラベルノイズが勾配ブースト決定木に及ぼす影響とそれらの効果を緩和する方法を検討することである。
提案手法は,成人のデータセットに対して最先端のノイズ検出性能を示し,成人および乳癌のデータセットに対して最も高い分類精度とリコールを実現する。
論文 参考訳(メタデータ) (2024-09-13T09:09:24Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - Improving Noise Robustness through Abstractions and its Impact on Machine Learning [2.6563873893593826]
ノイズは機械学習(ML)手法の適用に大きな影響を与える学習理論の基本的な問題である。
本稿では,データ抽象化を用いてノイズを緩和する手法を提案する。
目標は、抽象化によって生成された情報の損失を通じて、モデルの性能に対するノイズの影響を減らすことである。
論文 参考訳(メタデータ) (2024-06-12T17:14:44Z) - Sample selection with noise rate estimation in noise learning of medical image analysis [3.9934250802854376]
本稿では,ノイズの多いデータセットでトレーニングされた場合のニューラルネットワークの性能を向上させる新しいサンプル選択手法を提案する。
本手法では,線形回帰を用いて損失値の分布を解析することにより,データセットの雑音率を推定する。
モデルのノイズ堅牢性をさらに高めるために,スパース正規化を採用している。
論文 参考訳(メタデータ) (2023-12-23T11:57:21Z) - Learning to Abstain From Uninformative Data [20.132146513548843]
本研究では,一般的なノイズ発生過程下での学習と行動の問題について検討する。
この問題において、データ分布はラベルに高ノイズの非形式的なサンプルのかなりの割合を有する。
本稿では,選択学習理論に着想を得た損失を生かして,これらの条件下での学習に新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-25T15:55:55Z) - Adaptive Fake Audio Detection with Low-Rank Model Squeezing [50.7916414913962]
ファインタニングのような従来の手法は計算集約的であり、既知の偽音声タイプの知識を損なう危険性がある。
本稿では,新たに登場したニセモノ音声タイプに特化して,低ランク適応行列をトレーニングするコンセプトを紹介する。
当社のアプローチには,ストレージメモリ要件の削減やエラー率の低下など,いくつかのメリットがあります。
論文 参考訳(メタデータ) (2023-06-08T06:06:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Hard Sample Aware Noise Robust Learning for Histopathology Image
Classification [4.75542005200538]
病理組織像分類のための新しいハードサンプル認識型ノイズロバスト学習法を提案する。
本研究は, 難燃性難燃性試料と難燃性試料とを識別するため, 簡易・難燃性検出モデルを構築した。
本稿では,雑音抑圧・高強度化(NSHE)方式を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:07:55Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。