論文の概要: Deep Learning for Prediction and Classifying the Dynamical behaviour of Piecewise Smooth Maps
- arxiv url: http://arxiv.org/abs/2406.17001v1
- Date: Mon, 24 Jun 2024 14:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:50:40.677002
- Title: Deep Learning for Prediction and Classifying the Dynamical behaviour of Piecewise Smooth Maps
- Title(参考訳): 平滑な地図の動的挙動の予測と分類のための深層学習
- Authors: Vismaya V S, Bharath V Nair, Sishu Shankar Muni,
- Abstract要約: 本稿では,様々な深層学習モデルを用いたスムーズな地図の動的特性の予測について検討する。
深層学習モデルを用いて断片的滑らかな地図の力学を予測するための様々な新しい方法を示した。
長期記憶(LSTM)やリカレントニューラルネットワーク(RNN)のような深層学習モデルを用いて、2次元境界衝突分岐正規形マップの2つのパラメトリックチャートを再構成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper explores the prediction of the dynamics of piecewise smooth maps using various deep learning models. We have shown various novel ways of predicting the dynamics of piecewise smooth maps using deep learning models. Moreover, we have used machine learning models such as Decision Tree Classifier, Logistic Regression, K-Nearest Neighbor, Random Forest, and Support Vector Machine for predicting the border collision bifurcation in the 1D normal form map and the 1D tent map. Further, we classified the regular and chaotic behaviour of the 1D tent map and the 2D Lozi map using deep learning models like Convolutional Neural Network (CNN), ResNet50, and ConvLSTM via cobweb diagram and phase portraits. We also classified the chaotic and hyperchaotic behaviour of the 3D piecewise smooth map using deep learning models such as the Feed Forward Neural Network (FNN), Long Short-Term Memory (LSTM), and Recurrent Neural Network (RNN). Finally, deep learning models such as Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) are used for reconstructing the two parametric charts of 2D border collision bifurcation normal form map.
- Abstract(参考訳): 本稿では,様々な深層学習モデルを用いたスムーズな地図の動的特性の予測について検討する。
深層学習モデルを用いて断片的滑らかな地図の力学を予測するための様々な新しい方法を示した。
さらに,決定木分類,ロジスティック回帰,K-Nearest Neighbor,Random Forest,Support Vector Machineといった機械学習モデルを用いて,境界衝突分岐の予測を行った。
さらに,畳み込みニューラルネットワーク(CNN)やResNet50,ConvLSTMなどのディープラーニングモデルを用いて,1Dテントマップと2Dロジマップの規則的・カオス的動作をコブウェブ図や位相像を用いて分類した。
また、FNN(Feed Forward Neural Network)、LSTM(Long Short-Term Memory)、RNN(Recurrent Neural Network)といったディープラーニングモデルを用いて、3次元スムーズマップのカオス的・過カオス的挙動を分類した。
最後に、Long Short-Term Memory (LSTM) やRecurrent Neural Network (RNN) のようなディープラーニングモデルを用いて、2次元境界衝突分岐正規形マップの2つのパラメトリックチャートを再構成する。
関連論文リスト
- DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRFは、自動運転における3D環境を理解するための自己教師型学習フレームワークである。
スパースでシングルフレームのマルチビューカメラ入力からリッチなニューラルシーン表現を予測する。
RGB、奥行き、特徴画像を再構成するために、異なるレンダリングで自己教師される。
論文 参考訳(メタデータ) (2024-06-17T21:15:13Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - A Gradient Boosting Approach for Training Convolutional and Deep Neural
Networks [0.0]
グラディエントブースティング(GB)に基づく畳み込みニューラルネットワーク(CNN)とディープニューラルネットワークの訓練方法を紹介する。
提案モデルでは,同一アーキテクチャの標準CNNとDeep-NNに対して,分類精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-22T12:17:32Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
本稿では,高角交通カメラから車両軌跡を抽出する,機械学習による縦走査法を提案する。
空間時間マップ(STMap)をスパースフォアグラウンドおよびローランク背景に分解することにより,車両ストランドの抽出に動的モード分解(DMD)法を適用した。
Res-UNet+という名前のディープニューラルネットワークは、2つの一般的なディープラーニングアーキテクチャを適用することでセマンティックセグメンテーションタスクのために設計された。
論文 参考訳(メタデータ) (2022-01-13T00:49:24Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
ニューラルアーキテクチャサーチ(NAS)と受信信号強度(RSS)マップ再構築のための自己学習に基づくモデルを提案する。
このアプローチは、まず最適なNNアーキテクチャを見つけ、与えられた(RSS)マップの地上実測値に対して同時に推論モデルを訓練する。
実験結果から,この第2モデルの信号予測は,非学習に基づく最先端技術や,アーキテクチャ探索を伴わないNNモデルよりも優れていた。
論文 参考訳(メタデータ) (2021-05-17T12:19:22Z) - Improved Brain Age Estimation with Slice-based Set Networks [18.272915375351914]
本稿では,脳波予測のための新しいアーキテクチャを提案する。
提案アーキテクチャは, ディープ2D-CNNモデルを用いて, それぞれの2次元スライスをMRIで符号化することによって機能する。
次に、セットネットワークまたは置換不変層を用いて、これらの2Dスライス符号化の情報を組み合わせる。
英国のBiobankデータセットを用いたBrainAGE予測問題の実験では、置換不変層を持つモデルは、他の最先端のアプローチと比較して、より高速にトレーニングし、より良い予測を提供することが示された。
論文 参考訳(メタデータ) (2021-02-08T18:54:15Z) - Deep Active Surface Models [60.027353171412216]
アクティブサーフェスモデルは複雑な3次元表面をモデル化するのに有用な長い歴史を持っているが、ディープネットワークと組み合わせて使用されるのはアクティブ・コンターのみである。
グラフ畳み込みネットワークにシームレスに統合して、洗練された滑らかさを強制できるレイヤを導入します。
論文 参考訳(メタデータ) (2020-11-17T18:48:28Z) - Deep Learning of Chaos Classification [0.26651200086513094]
我々は,2次元チリコフ標準写像のカオス的および規則的ダイナミクスを識別する人工ニューラルネットワークを訓練する。
有限長軌跡を用いて、リアプノフ指数を評価する必要がある従来の数値法と比較する。
その結果,畳み込みニューラルネットワークは優れたカオス指標として利用できることを示した。
論文 参考訳(メタデータ) (2020-04-23T05:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。