論文の概要: Dwarf: Disease-weighted network for attention map refinement
- arxiv url: http://arxiv.org/abs/2406.17032v1
- Date: Mon, 24 Jun 2024 18:00:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:40:56.104600
- Title: Dwarf: Disease-weighted network for attention map refinement
- Title(参考訳): Dwarf: 注意マップのリファインメントのための病気重み付きネットワーク
- Authors: Haozhe Luo, Aurélie Pahud de Mortanges, Oana Inel, Mauricio Reyes,
- Abstract要約: 本研究は,医用画像解析における「ループから外れた人間」と「信頼」の問題に対処する。
本稿では、専門家のフィードバックを活用して、モデル妥当性と精度を高める病弱注意マップ改善ネットワーク(Dwarf)を提案する。
- 参考スコア(独自算出の注目度): 3.1232000201973564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interpretability of deep learning is crucial for evaluating the reliability of medical imaging models and reducing the risks of inaccurate patient recommendations. This study addresses the "human out of the loop" and "trustworthiness" issues in medical image analysis by integrating medical professionals into the interpretability process. We propose a disease-weighted attention map refinement network (Dwarf) that leverages expert feedback to enhance model relevance and accuracy. Our method employs cyclic training to iteratively improve diagnostic performance, generating precise and interpretable feature maps. Experimental results demonstrate significant improvements in interpretability and diagnostic accuracy across multiple medical imaging datasets. This approach fosters effective collaboration between AI systems and healthcare professionals, ultimately aiming to improve patient outcomes
- Abstract(参考訳): 深層学習の解釈可能性は、医療画像モデルの信頼性を評価し、不正確な患者推薦のリスクを低減するために重要である。
本研究は、医療専門家を解釈可能性のプロセスに統合することで、医療画像分析における「ループ外人間」と「信頼」の問題に対処する。
本稿では、専門家のフィードバックを活用して、モデル妥当性と精度を高める病弱注意マップ改善ネットワーク(Dwarf)を提案する。
本手法では, 繰り返し学習を用いて診断性能を反復的に向上し, 正確かつ解釈可能な特徴マップを生成する。
実験により,複数の医用画像データセットの解釈可能性および診断精度が有意に向上した。
このアプローチは、AIシステムと医療専門家の効果的なコラボレーションを促進する。
関連論文リスト
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Integrating ChatGPT into Secure Hospital Networks: A Case Study on
Improving Radiology Report Analysis [1.3624495460189863]
本研究は,ChatGPTに類似したクラウドベースのAIを,放射線学報告を解析するためのセキュアなモデルに初めて適応させたものである。
コントラスト学習によるユニークな文レベルの知識蒸留手法を用いて,異常検出の精度を95%以上向上する。
論文 参考訳(メタデータ) (2024-02-14T18:02:24Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - SHAMSUL: Systematic Holistic Analysis to investigate Medical
Significance Utilizing Local interpretability methods in deep learning for
chest radiography pathology prediction [1.0138723409205497]
局所的解釈可能なモデル非依存説明法(LIME)、共有付加的説明法(SHAP)、グラディエント重み付きクラス活性化マッピング(Grad-CAM)、レイヤワイド関連伝搬法(LRP)の4つの方法の適用について検討した。
本分析では, 単一ラベルと多ラベルの予測を両方含み, 定量的, 定性的な調査を通じて包括的かつ不偏な評価を行い, 人的専門家のアノテーションと比較した。
論文 参考訳(メタデータ) (2023-07-16T11:10:35Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - Towards Trustworthy Automatic Diagnosis Systems by Emulating Doctors'
Reasoning with Deep Reinforcement Learning [2.314562406457073]
深層強化学習フレームワークを用いて証拠取得と自動診断タスクをモデル化することを提案する。
提案手法は, 競合する病理学予測精度を維持しつつ, 既存モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-13T17:17:17Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。