論文の概要: Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection
- arxiv url: http://arxiv.org/abs/2404.10026v1
- Date: Mon, 15 Apr 2024 09:07:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:08:17.961202
- Title: Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection
- Title(参考訳): プライバシMRI脳腫瘍検出のための分散フェデレーション学習に基づくディープラーニングモデル
- Authors: Lisang Zhou, Meng Wang, Ning Zhou,
- Abstract要約: 分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 11.980634373191542
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis while protecting patient privacy, which is crucial for achieving efficient medical image analysis and accelerating medical research progress. This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis. Traditional Centralized Machine Learning models, despite their widespread use in medical imaging for tasks such as disease diagnosis, raise significant privacy concerns due to the sensitive nature of patient data. As an alternative, FL emerges as a promising solution by allowing the training of a collective global model across local clients without centralizing the data, thus preserving privacy. Focusing on the application of FL in Magnetic Resonance Imaging (MRI) brain tumor detection, this study demonstrates the effectiveness of the Federated Learning framework coupled with EfficientNet-B0 and the FedAvg algorithm in enhancing both privacy and diagnostic accuracy. Through a meticulous selection of preprocessing methods, algorithms, and hyperparameters, and a comparative analysis of various Convolutional Neural Network (CNN) architectures, the research uncovers optimal strategies for image classification. The experimental results reveal that EfficientNet-B0 outperforms other models like ResNet in handling data heterogeneity and achieving higher accuracy and lower loss, highlighting the potential of FL in overcoming the limitations of traditional models. The study underscores the significance of addressing data heterogeneity and proposes further research directions for broadening the applicability of FL in medical image analysis.
- Abstract(参考訳): 分散トレーニングは、大規模な医用画像データセットの処理を容易にし、患者のプライバシーを保護しながら、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
従来の集中機械学習モデルは、疾患診断などのタスクに医用画像が広く使われているにもかかわらず、患者のデータに敏感な性質があるため、プライバシー上の懸念を生じさせる。
FLはデータの集中化なしに、ローカルクライアント全体にわたる集合的グローバルモデルのトレーニングを可能にすることで、将来性のあるソリューションとして浮上し、プライバシを保護します。
本研究では,磁気共鳴イメージング(MRI)脳腫瘍検出におけるFLの適用に着目し,高能率Net-B0とFedAvgアルゴリズムを併用したフェデレートラーニングフレームワークの有効性を実証した。
事前処理方法、アルゴリズム、ハイパーパラメータの巧妙な選択と、さまざまな畳み込みニューラルネットワーク(CNN)アーキテクチャの比較分析により、画像分類のための最適な戦略が明らかになった。
EfficientNet-B0は、データ不均一性を処理し、より高い精度と損失を達成し、従来のモデルの限界を克服するFLの可能性を強調し、ResNetのような他のモデルよりも優れていることを示した。
本研究は,医療画像解析におけるFLの適用性を高めるために,データの均一性に対処することの重要性を強調し,さらなる研究の方向性を提案する。
関連論文リスト
- Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
心房細動 (AFib) の早期発見は, 無症候性, 発作性に困難である。
本研究は、生のECGデータを用いてAFibを検出するために、フェデレートラーニング(FL)プラットフォーム上でニューラルネットワークをトレーニングする可能性を評価する。
論文 参考訳(メタデータ) (2024-10-14T15:06:10Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
本稿では,Ensemble-Based Federated Learning (EBFL)フレームワークを紹介する。
EBFLフレームワークは、機密性の高い患者データを共有することよりも、モデルの特徴を強調することによって、従来のアプローチから逸脱する。
グリオーマ,髄膜腫,下垂体,非腫瘍例などの脳腫瘍の分類において,有意な精度が得られた。
論文 参考訳(メタデータ) (2024-03-14T19:51:18Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症(DR: Diabetic Retinopathy)は、早期発見と治療の急激な必要性を浮き彫りにしている。
機械学習(ML)技術の最近の進歩は、DR検出における将来性を示しているが、ラベル付きデータの可用性は、しばしばパフォーマンスを制限している。
本研究では,DR検出に適したSemi-Supervised Graph Learning SSGLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-02T04:42:08Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
深層学習に基づく疾患診断の応用は、様々な疾患の段階での正確な診断に不可欠である。
処理リソースをデバイスに近づけることで、分散コンピューティングパラダイムは、病気の診断に革命をもたらす可能性がある。
本研究では、プライバシとパフォーマンス要件を満たすために、IoTデータ分析システムに対するフェデレーションベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-27T06:31:43Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。