論文の概要: Bayesian Deep ICE
- arxiv url: http://arxiv.org/abs/2406.17058v1
- Date: Mon, 24 Jun 2024 18:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 18:40:56.015808
- Title: Bayesian Deep ICE
- Title(参考訳): ベイジアンディープICE
- Authors: Jyotishka Datta, Nicholas G. Polson,
- Abstract要約: ディープインディペンデントコンポーネント推定(DICE)は、機能エンジニアリング抽出法として、現代の機械学習に多くの応用がある。
本稿では,予測最大化(EM)とマルコフ・チェイン・モンテカルロ(MCMC)アルゴリズムによる全後方サンプリングによる両点推定が可能な,独立成分分析の潜在変数表現を提案する。
- 参考スコア(独自算出の注目度): 0.4987670632802289
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Independent Component Estimation (DICE) has many applications in modern day machine learning as a feature engineering extraction method. We provide a novel latent variable representation of independent component analysis that enables both point estimates via expectation-maximization (EM) and full posterior sampling via Markov Chain Monte Carlo (MCMC) algorithms. Our methodology also applies to flow-based methods for nonlinear feature extraction. We discuss how to implement conditional posteriors and envelope-based methods for optimization. Through this representation hierarchy, we unify a number of hitherto disjoint estimation procedures. We illustrate our methodology and algorithms on a numerical example. Finally, we conclude with directions for future research.
- Abstract(参考訳): ディープインディペンデントコンポーネント推定(DICE)は、機能エンジニアリング抽出法として、現代の機械学習に多くの応用がある。
本稿では,予測最大化(EM)とマルコフ・チェイン・モンテカルロ(MCMC)アルゴリズムによる全後方サンプリングによる両点推定が可能な,独立成分分析の潜在変数表現を提案する。
また,非線形特徴抽出のためのフローベース手法にも適用した。
本稿では,条件付き後部法とエンベロープ法を用いて最適化を行う方法について論じる。
この表現階層を通じて、多くの非結合推定手順を統一する。
数値的な例で方法論とアルゴリズムを解説する。
最後に,今後の研究の方向性について述べる。
関連論文リスト
- SGD with Clipping is Secretly Estimating the Median Gradient [19.69067856415625]
劣化ノードを用いた分散学習,トレーニングデータに大きな外れ値が存在すること,プライバシ制約下での学習,あるいはアルゴリズム自体のダイナミクスによるヘビーテールノイズなどについて検討する。
まず,サンプル間の中央勾配を計算し,重み付き状態依存雑音下でも収束できることを示す。
本稿では,反復の中央値勾配を推定するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T08:54:07Z) - PBES: PCA Based Exemplar Sampling Algorithm for Continual Learning [0.0]
本稿では、主成分分析(PCA)と中央値サンプリングに基づく新しい模範選択手法と、クラス増分学習の設定におけるニューラルネットワークトレーニング方式を提案する。
このアプローチは、データの異常値による落とし穴を回避し、さまざまなインクリメンタル機械学習モデルの実装と使用の両方が容易である。
論文 参考訳(メタデータ) (2023-12-14T21:27:38Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
我々は、強化学習のためのトンプソンサンプリングに基づくスケーラブルで効果的な探索戦略を提案する。
代わりに、Langevin Monte Carlo を用いて、Q 関数をその後部分布から直接サンプリングする。
提案手法は,Atari57スイートからのいくつかの挑戦的な探索課題において,最先端の深部RLアルゴリズムと比較して,より優れた,あるいは類似した結果が得られる。
論文 参考訳(メタデータ) (2023-05-29T17:11:28Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
フィルタ方程式は、数値天気予報、金融、工学など、多くの現実の応用において中心的な役割を果たす。
フィルタリング方程式の解を近似する古典的なアプローチの1つは、分割法と呼ばれるPDEにインスパイアされた方法を使うことである。
我々はこの手法をニューラルネットワーク表現と組み合わせて、信号プロセスの非正規化条件分布の近似を生成する。
論文 参考訳(メタデータ) (2022-01-10T11:01:36Z) - Bayesian inference of ODEs with Gaussian processes [17.138448665454373]
本稿では、ガウス過程を用いて未知のODEシステムの後部をデータから直接推測する新しいベイズ非パラメトリックモデルを提案する。
ベクトル場後部を表すために,分離された関数型サンプリングを用いてスパース変分推論を導出する。
この手法はベクトル場後部演算の利点を示し、予測不確実性スコアは複数のODE学習タスクにおける代替手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-21T08:09:17Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
本稿では、同時局所化およびマッピング(SLAM)におけるマップ間ループ閉包外乱検出のための、新しい分散手法を提案する。
提案アルゴリズムは優れた初期化に頼らず、一度に2つ以上のマップを処理できる。
論文 参考訳(メタデータ) (2020-02-07T06:34:44Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。