論文の概要: Horseshoe-type Priors for Independent Component Estimation
- arxiv url: http://arxiv.org/abs/2406.17058v2
- Date: Sun, 1 Sep 2024 23:57:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 17:31:13.877458
- Title: Horseshoe-type Priors for Independent Component Estimation
- Title(参考訳): 独立成分推定のためのホースシュー型前駆体
- Authors: Jyotishka Datta, Nicholas G. Polson,
- Abstract要約: 独立成分推定(ICE)は現代の機械学習に多くの応用がある。
ホースシュー型プリエントはスケーラブルなアルゴリズムを提供するために使用される。
条件付き後部手法とエンベロープ方式の最適化方法について述べる。
- 参考スコア(独自算出の注目度): 0.4987670632802289
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Independent Component Estimation (ICE) has many applications in modern day machine learning as a feature engineering extraction method. Horseshoe-type priors are used to provide scalable algorithms that enables both point estimates via expectation-maximization (EM) and full posterior sampling via Markov Chain Monte Carlo (MCMC) algorithms. Our methodology also applies to flow-based methods for nonlinear feature extraction and deep learning. We also discuss how to implement conditional posteriors and envelope-based methods for optimization. Through this hierarchy representation, we unify a number of hitherto disparate estimation procedures. We illustrate our methodology and algorithms on a numerical example. Finally, we conclude with directions for future research.
- Abstract(参考訳): 独立成分推定(ICE)は、機能工学的抽出法として、現代の機械学習に多くの応用がある。
ホースシュー型プリエントは、予測最大化(EM)とマルコフ・チェイン・モンテカルロ(MCMC)アルゴリズムによる完全な後方サンプリングによるポイント推定を可能にするスケーラブルなアルゴリズムを提供するために使用される。
提案手法は,非線形特徴抽出とディープラーニングのためのフローベース手法にも適用できる。
また,条件付き後続法とエンベロープ法を用いて最適化する方法についても論じる。
この階層表現を通じて、多くの異なる推定手順を統一する。
数値的な例で方法論とアルゴリズムを解説する。
最後に,今後の研究の方向性について述べる。
関連論文リスト
- Unraveling Rodeo Algorithm Through the Zeeman Model [0.0]
任意の初期状態を考慮したハミルトニアン一般に対する固有状態と固有値スペクトルを決定するために、ロデオアルゴリズムを解く。
我々はPennylaneとQiskitのプラットフォームリソースを利用して、ハミルトンが1スピンと2スピンのゼーマンモデルによって記述されるシナリオを分析する。
論文 参考訳(メタデータ) (2024-07-16T01:29:25Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
本稿では, FSAを用いた確率, 勾配, 予測分布の計算コストの削減に, 反復法をどのように利用できるかを示す。
また,推定法や反復法に依存する予測分散を計算する新しい,正確かつ高速な手法を提案する。
すべてのメソッドは、ハイレベルなPythonとRパッケージを備えたフリーのC++ソフトウェアライブラリで実装されている。
論文 参考訳(メタデータ) (2024-05-23T12:25:22Z) - PBES: PCA Based Exemplar Sampling Algorithm for Continual Learning [0.0]
本稿では、主成分分析(PCA)と中央値サンプリングに基づく新しい模範選択手法と、クラス増分学習の設定におけるニューラルネットワークトレーニング方式を提案する。
このアプローチは、データの異常値による落とし穴を回避し、さまざまなインクリメンタル機械学習モデルの実装と使用の両方が容易である。
論文 参考訳(メタデータ) (2023-12-14T21:27:38Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。