Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks
- URL: http://arxiv.org/abs/2406.17173v2
- Date: Wed, 26 Jun 2024 20:54:45 GMT
- Title: Diff3Dformer: Leveraging Slice Sequence Diffusion for Enhanced 3D CT Classification with Transformer Networks
- Authors: Zihao Jin, Yingying Fang, Jiahao Huang, Caiwen Xu, Simon Walsh, Guang Yang,
- Abstract summary: We propose a Diffusion-based 3D Vision Transformer (Diff3Dformer) to aggregate repetitive information within 3D CT scans.
Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans.
- Score: 5.806035963947936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The manifestation of symptoms associated with lung diseases can vary in different depths for individual patients, highlighting the significance of 3D information in CT scans for medical image classification. While Vision Transformer has shown superior performance over convolutional neural networks in image classification tasks, their effectiveness is often demonstrated on sufficiently large 2D datasets and they easily encounter overfitting issues on small medical image datasets. To address this limitation, we propose a Diffusion-based 3D Vision Transformer (Diff3Dformer), which utilizes the latent space of the Diffusion model to form the slice sequence for 3D analysis and incorporates clustering attention into ViT to aggregate repetitive information within 3D CT scans, thereby harnessing the power of the advanced transformer in 3D classification tasks on small datasets. Our method exhibits improved performance on two different scales of small datasets of 3D lung CT scans, surpassing the state of the art 3D methods and other transformer-based approaches that emerged during the COVID-19 pandemic, demonstrating its robust and superior performance across different scales of data. Experimental results underscore the superiority of our proposed method, indicating its potential for enhancing medical image classification tasks in real-world scenarios.
Related papers
- Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
Cross-D Conv operation bridges the dimensional gap by learning the phase shifting in the Fourier domain.
Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning.
arXiv Detail & Related papers (2024-11-02T13:03:44Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in
Multiple Anatomical Locations [1.7413461132662074]
We propose a novel model, denoted a multi-dimension unified Swin transformer (MDU-ST) for 3D lesion segmentation.
The network's performance is evaluated by the Dice similarity coefficient (DSC) and Hausdorff distance (HD) using an internal 3D lesion dataset.
The proposed method can be used to conduct automated 3D lesion segmentation to assist radiomics and tumor growth modeling studies.
arXiv Detail & Related papers (2023-09-04T21:24:00Z) - Adapting Pre-trained Vision Transformers from 2D to 3D through Weight
Inflation Improves Medical Image Segmentation [19.693778706169752]
We use a weight inflation strategy to adapt pre-trained Transformers from 2D to 3D, retaining the benefit of both transfer learning and depth information.
Our approach achieves state-of-the-art performances across a broad range of 3D medical image datasets.
arXiv Detail & Related papers (2023-02-08T19:38:13Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
We propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection.
First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan.
Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view.
Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions.
arXiv Detail & Related papers (2022-09-20T11:58:23Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.