Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline
- URL: http://arxiv.org/abs/2406.17215v3
- Date: Tue, 19 Nov 2024 20:16:11 GMT
- Title: Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline
- Authors: Mengshuo Jia, Zeyu Cui, Gabriela Hug,
- Abstract summary: This work proposes a modular framework that integrates expertise from both the power system and large language models.
It improves GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy.
- Score: 1.4255659581428337
- License:
- Abstract: The integration of experiment technologies with large language models (LLMs) is transforming scientific research, offering AI capabilities beyond specialized problem-solving to becoming research assistants for human scientists. In power systems, simulations are essential for research. However, LLMs face significant challenges in power system simulations due to limited pre-existing knowledge and the complexity of power grids. To address this issue, this work proposes a modular framework that integrates expertise from both the power system and LLM domains. This framework enhances LLMs' ability to perform power system simulations on previously unseen tools. Validated using 34 simulation tasks in Daline, a (optimal) power flow simulation and linearization toolbox not yet exposed to LLMs, the proposed framework improved GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy (with the entire knowledge base uploaded). These results highlight the potential of LLMs as research assistants in power systems.
Related papers
- Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework [1.4255659581428337]
We propose a feedback-driven, multi-agent framework for managing simulations in power systems.
This framework achieves success rates of 93.13% and 96.85%, respectively, on 69 diverse tasks from Daline and MATPOWER.
It also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens.
arXiv Detail & Related papers (2024-11-21T19:01:07Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Towards Fully Autonomous Research Powered by LLMs: Case Study on Simulations [5.03859766090879]
This study explores the feasibility of constructing an autonomous simulation agent powered by Large Language Models.
Using a simulation problem of polymer chain conformations as a case study, we assessed the performance of ASAs powered by different LLMs.
Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions.
arXiv Detail & Related papers (2024-08-28T03:48:05Z) - LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale [17.00936774784349]
There is a lack of simulation infrastructure capable of accurately modeling versatile hardware-software behaviors in large language model (LLM) serving systems.
This paper aims to develop an effective simulation tool, called LLMServingSim, to support future research in LLM serving systems.
arXiv Detail & Related papers (2024-08-10T09:26:15Z) - Meent: Differentiable Electromagnetic Simulator for Machine Learning [0.6902278820907753]
Electromagnetic (EM) simulation plays a crucial role in analyzing and designing devices with sub-wavelength scale structures.
Meent is an EM simulation software that employs rigorous coupled-wave analysis (RCWA)
We present three applications of Meent: 1) generating a dataset for training neural operator, 2) serving as an environment for the reinforcement learning of nanophotonic device optimization, and 3) providing a solution for inverse problems with gradient-based gradients.
arXiv Detail & Related papers (2024-06-11T10:00:06Z) - The Power of Resets in Online Reinforcement Learning [73.64852266145387]
We explore the power of simulators through online reinforcement learning with local simulator access (or, local planning)
We show that MDPs with low coverability can be learned in a sample-efficient fashion with only $Qstar$-realizability.
We show that the notorious Exogenous Block MDP problem is tractable under local simulator access.
arXiv Detail & Related papers (2024-04-23T18:09:53Z) - An LLM-Based Digital Twin for Optimizing Human-in-the Loop Systems [13.388869442538399]
We present a case study that employs large language models (LLMs) to mimic the behaviors and thermal preferences of various population groups in a shopping mall.
The aggregated thermal preferences are integrated into an agent-in-the-loop based reinforcement learning algorithm AitL-RL.
Our results show that LLMs are capable of simulating complex population movements within large open spaces.
arXiv Detail & Related papers (2024-03-25T14:32:28Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.