Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline
- URL: http://arxiv.org/abs/2406.17215v3
- Date: Tue, 19 Nov 2024 20:16:11 GMT
- Title: Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline
- Authors: Mengshuo Jia, Zeyu Cui, Gabriela Hug,
- Abstract summary: This work proposes a modular framework that integrates expertise from both the power system and large language models.
It improves GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy.
- Score: 1.4255659581428337
- License:
- Abstract: The integration of experiment technologies with large language models (LLMs) is transforming scientific research, offering AI capabilities beyond specialized problem-solving to becoming research assistants for human scientists. In power systems, simulations are essential for research. However, LLMs face significant challenges in power system simulations due to limited pre-existing knowledge and the complexity of power grids. To address this issue, this work proposes a modular framework that integrates expertise from both the power system and LLM domains. This framework enhances LLMs' ability to perform power system simulations on previously unseen tools. Validated using 34 simulation tasks in Daline, a (optimal) power flow simulation and linearization toolbox not yet exposed to LLMs, the proposed framework improved GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy (with the entire knowledge base uploaded). These results highlight the potential of LLMs as research assistants in power systems.
Related papers
- MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing [3.379854610429579]
Recurrent Large Language Models (R-LLM) have proven effective in mitigating the complexity of self-attention.
We propose a low-cost, training-free algorithm to sparsify R-LLMs' activations to enhance energy efficiency on neuromorphic hardware.
arXiv Detail & Related papers (2025-01-09T19:13:03Z) - LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System [0.0]
We present LABIIUM, an AI-enhanced measurement automation system designed to streamline experimental and improve user productivity.
Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead.
The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry.
arXiv Detail & Related papers (2024-12-07T00:15:24Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBench is a benchmark that provides standardized settings and metrics to evaluate LMs' data generation abilities.
Through synthesizing 1.26 million training instances using 6 LMs and training 99 student models, we uncover key insights about LMs' data generation capabilities.
arXiv Detail & Related papers (2024-12-04T19:20:32Z) - Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework [1.4255659581428337]
We propose a feedback-driven, multi-agent framework for managing simulations in power systems.
This framework achieves success rates of 93.13% and 96.85%, respectively, on 69 diverse tasks from Daline and MATPOWER.
It also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens.
arXiv Detail & Related papers (2024-11-21T19:01:07Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale [17.00936774784349]
There is a lack of simulation infrastructure capable of accurately modeling versatile hardware-software behaviors in large language model (LLM) serving systems.
This paper aims to develop an effective simulation tool, called LLMServingSim, to support future research in LLM serving systems.
arXiv Detail & Related papers (2024-08-10T09:26:15Z) - An LLM-Based Digital Twin for Optimizing Human-in-the Loop Systems [13.388869442538399]
We present a case study that employs large language models (LLMs) to mimic the behaviors and thermal preferences of various population groups in a shopping mall.
The aggregated thermal preferences are integrated into an agent-in-the-loop based reinforcement learning algorithm AitL-RL.
Our results show that LLMs are capable of simulating complex population movements within large open spaces.
arXiv Detail & Related papers (2024-03-25T14:32:28Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly [62.473245910234304]
This paper takes a hardware-centric approach to explore how Large Language Models can be brought to modern edge computing systems.
We provide a micro-level hardware benchmark, compare the model FLOP utilization to a state-of-the-art data center GPU, and study the network utilization in realistic conditions.
arXiv Detail & Related papers (2023-10-04T20:27:20Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.