LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System
- URL: http://arxiv.org/abs/2412.16172v2
- Date: Tue, 04 Mar 2025 18:15:36 GMT
- Title: LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System
- Authors: Emmanuel A. Olowe, Danial Chitnis,
- Abstract summary: We present LABIIUM, an AI-enhanced measurement automation system designed to streamline experimental and improve user productivity.<n>Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead.<n>The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexity of laboratory environments requires solutions that simplify instrument interaction and enhance measurement automation. Traditional tools often require configuration, software, and programming skills, creating barriers to productivity. Previous approaches, including dedicated software suites and custom scripts, frequently fall short in providing user-friendly solutions that align with programming practices. We present LABIIUM, an AI-enhanced, zero-configuration measurement automation system designed to streamline experimental workflows and improve user productivity. LABIIUM integrates an AI assistant powered by Large Language Models (LLMs) to generate code. LABIIUM's Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead. To demonstrate its capabilities, we conducted experiments involving the measurement of the parametric transfer curve of a simple two-transistor inverting amplifier with a current source load. The AI assistant was evaluated using different prompt scenarios and compared with multiple models, including Claude Sonnet 3.5, Gemini Pro 1.5, and GPT-4o. An expert solution implementing the Gradient-Weighted Adaptive Stochastic Sampling (GWASS) method was used as a baseline. The solutions generated by the AI assistant were compared with the expert solution and a uniform linear sweep baseline with 10,000 points. The graph results show that the LLMs were able to successfully complete the most basic uniform sweep, but LLMs were unable to develop adaptive sweeping algorithms to compete with GWASS. The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry, and emphasizes the future work required to improve LLM performance in Electronic Measurement Science Tasks.
Related papers
- Machine Learning Pipeline for Software Engineering: A Systematic Literature Review [0.0]
This systematic literature review examines state-of-the-art Machine Learning pipelines designed for software engineering (SE)<n>Our findings show that robust preprocessing, such as SMOTE for data balancing, improves model reliability.<n> Ensemble methods like Random Forest and Gradient Boosting dominate performance across tasks.<n>New metrics like Best Arithmetic Mean (BAM) are emerging in niche applications.
arXiv Detail & Related papers (2025-07-31T15:37:30Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units [1.5845117761091052]
We introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units.<n>We show that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs.<n>We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines.
arXiv Detail & Related papers (2025-07-25T06:34:59Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning [63.31585771716123]
Large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL)<n>We introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning.<n>Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training.
arXiv Detail & Related papers (2025-05-22T09:00:19Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design.<n> MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance.
arXiv Detail & Related papers (2025-05-21T00:56:09Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - FamilyTool: A Multi-hop Personalized Tool Use Benchmark [94.1158032740113]
We introduce FamilyTool, a novel benchmark grounded in a family-based knowledge graph (KG)
FamilyTool challenges Large Language Models with queries spanning 1 to 3 relational hops.
Experiments reveal significant performance gaps in state-of-the-art LLMs.
arXiv Detail & Related papers (2025-04-09T10:42:36Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.
Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.
We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Agents [17.301758094000125]
Large language model (LLM) agents have emerged as a promising solution to automate the development of computer vision models.
We introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design.
Iterative Refinement improves stability, interpretability, and overall model performance.
arXiv Detail & Related papers (2025-02-25T01:52:37Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - LLM Agents Making Agent Tools [2.5529148902034637]
Tool use has turned large language models (LLMs) into powerful agents that can perform complex multi-step tasks.
We propose ToolMaker, a novel agentic framework that autonomously transforms papers with code into LLM-compatible tools.
Given a short task description and a repository URL, ToolMaker autonomously installs required dependencies and generates code to perform the task.
arXiv Detail & Related papers (2025-02-17T11:44:11Z) - Enhancing LLMs for Power System Simulations: A Feedback-driven Multi-agent Framework [1.4255659581428337]
We propose a feedback-driven, multi-agent framework for managing simulations in power systems.
This framework achieves success rates of 93.13% and 96.85%, respectively, on 69 diverse tasks from Daline and MATPOWER.
It also supports rapid, cost-effective task execution, completing each simulation in approximately 30 seconds at an average cost of 0.014 USD for tokens.
arXiv Detail & Related papers (2024-11-21T19:01:07Z) - Hacking, The Lazy Way: LLM Augmented Pentesting [0.0]
We introduce a new concept called "LLM Augmented Pentesting" demonstrated with a tool named "Pentest Copilot"<n>Our approach focuses on overcoming the traditional resistance to automation in penetration testing by employing LLMs to automate specific sub-tasks.<n>Pentest Copilot showcases remarkable proficiency in tasks such as utilizing testing tools, interpreting outputs, and suggesting follow-up actions.
arXiv Detail & Related papers (2024-09-14T17:40:35Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
arXiv Detail & Related papers (2024-09-03T15:07:11Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - Enabling Large Language Models to Perform Power System Simulations with Previously Unseen Tools: A Case of Daline [1.4255659581428337]
This work proposes a modular framework that integrates expertise from both the power system and large language models.
It improves GPT-4o's simulation coding accuracy from 0% to 96.07%, also outperforming the ChatGPT-4o web interface's 33.8% accuracy.
arXiv Detail & Related papers (2024-06-25T02:05:26Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology [4.2990995991059275]
Large Language Models (LLMs) and Generative Pre-trained Transformers (GPTs) have transformed the field of Software Engineering.
We introduce CodePori, a novel system designed to automate code generation for large and complex software projects.
Results: CodePori is able to generate running code for large-scale projects, aligned with the typical software development process.
arXiv Detail & Related papers (2024-02-02T13:42:50Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.