論文の概要: What Do the Circuits Mean? A Knowledge Edit View
- arxiv url: http://arxiv.org/abs/2406.17241v1
- Date: Tue, 25 Jun 2024 03:09:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 15:51:17.713325
- Title: What Do the Circuits Mean? A Knowledge Edit View
- Title(参考訳): 回路とは何か? 知識編集の視点
- Authors: Huaizhi Ge, Frank Rudzicz, Zining Zhu,
- Abstract要約: GPT2-XLモデルにおいて,多様なテキスト分類データセットを用いて回路を抽出する。
以上の結果から,これらの回路はエンティティ知識を含むが,知識編集において補完回路よりも新しい知識に抵抗することが示唆された。
その結果、回路の60%は、注意や正規化ではなく、層モジュールで構成されていることがわかった。
- 参考スコア(独自算出の注目度): 18.022428746019582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of language model interpretability, circuit discovery is gaining popularity. Despite this, the true meaning of these circuits remain largely unanswered. We introduce a novel method to learn their meanings as a holistic object through the lens of knowledge editing. We extract circuits in the GPT2-XL model using diverse text classification datasets, and use hierarchical relations datasets to explore knowledge editing in the circuits. Our findings indicate that these circuits contain entity knowledge but resist new knowledge more than complementary circuits during knowledge editing. Additionally, we examine the impact of circuit size, discovering that an ideal "theoretical circuit" where essential knowledge is concentrated likely incorporates more than 5% but less than 50% of the model's parameters. We also assess the overlap between circuits from different datasets, finding moderate similarities. What constitutes these circuits, then? We find that up to 60% of the circuits consist of layer normalization modules rather than attention or MLP modules, adding evidence to the ongoing debates regarding knowledge localization. In summary, our findings offer new insights into the functions of the circuits, and introduce research directions for further interpretability and safety research of language models.
- Abstract(参考訳): 言語モデルの解釈可能性の分野では、回路発見が人気を集めている。
しかし、これらの回路の真の意味はほとんど答えられていない。
本稿では,知識編集のレンズを用いて,その意味を包括的対象として学習する新しい手法を提案する。
多様なテキスト分類データセットを用いてGPT2-XLモデルの回路を抽出し、階層的関係データセットを用いて回路内の知識編集を探索する。
以上の結果から,これらの回路はエンティティ知識を含むが,知識編集において補完回路よりも新しい知識に抵抗することが示唆された。
さらに,本質的な知識が集中している理想的な「理論回路」が,5%以上だが50%未満のパラメータを組み込む可能性が示唆された。
また、異なるデータセットからの回路間の重なり合いを評価し、適度な類似性を見出す。
では、これらの回路を構成するものは何か?
回路の最大60%は、注意やMLPモジュールではなく、層正規化モジュールで構成されており、知識ローカライゼーションに関する議論が進行中であることを示す。
要約して,本研究は,回路の機能に関する新たな知見を提供し,言語モデルのさらなる解釈可能性および安全性研究のための研究の方向性を紹介する。
関連論文リスト
- How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training [92.88889953768455]
大きな言語モデル(LLM)は、どのようにして新しい知識を内部化するかを理解する上で、重大なギャップに直面します。
知識記憶と処理を容易にする計算サブグラフを同定する。
論文 参考訳(メタデータ) (2025-02-16T16:55:43Z) - Circuit Compositions: Exploring Modular Structures in Transformer-Based Language Models [22.89563355840371]
言語モデル内の高構成サブタスクの回路解析により,ニューラルネットワークのモジュラリティについて検討する。
以上の結果から,機能的に類似した回路は,ノード重なりとクロスタスク忠実度の両方を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-10-02T11:36:45Z) - Knowledge Circuits in Pretrained Transformers [47.342682123081204]
現代の大言語モデルが知識をいかに保存するかという内部的な研究は、長い間、研究者の間で激しい関心と調査の対象となっていた。
本稿では,言語モデルのグラフを掘り下げて,特定の知識を明確にするための知識回路を明らかにする。
これらの知識回路に対する現在の知識編集技術の影響を評価し,これらの編集手法の機能や制約についてより深い知見を提供する。
論文 参考訳(メタデータ) (2024-05-28T08:56:33Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Knowledge-Infused Self Attention Transformers [11.008412414253662]
トランスフォーマーベースの言語モデルは、様々な自然言語処理タスクにおいて驚くべき成功を収めた。
本稿では,トランスモデルの異なるコンポーネントに知識を注入するための体系的手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T13:55:01Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
構造化知識と非構造化知識の両方を活用する統一的な視点を提供するために、統一知識インターフェイスUNTERを提案する。
どちらの形態の知識も注入され、UNTERは一連の知識駆動NLPタスクの継続的な改善を得る。
論文 参考訳(メタデータ) (2023-05-02T17:33:28Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
モデルパラメータに大量の知識を格納することは、絶え間なく増加する知識とリソースの要求を考えると、準最適である、と我々は主張する。
LM-CORE - これを実現するための一般的なフレームワークで、外部の知識ソースから言語モデルのトレーニングをテキストデカップリングすることができる。
実験結果から, LM-COREは知識探索タスクにおいて, 最先端の知識強化言語モデルよりも大きく, 堅牢な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2022-08-12T18:59:37Z) - Learning to Express in Knowledge-Grounded Conversation [62.338124154016825]
本稿では,知識表現の2つの側面,すなわち各部分における内容の応答構造とスタイルについて考察する。
本稿では, セグメンテーションに基づく生成モデルを提案し, 応答における知識表現の基盤となるパターンを発見するために, 変動的アプローチを用いてモデルを最適化する。
論文 参考訳(メタデータ) (2022-04-12T13:43:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。