論文の概要: MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework
- arxiv url: http://arxiv.org/abs/2406.17248v2
- Date: Thu, 27 Jun 2024 09:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 18:27:13.203949
- Title: MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework
- Title(参考訳): MindSpore Quantum: ユーザフレンドリー、高性能、AI対応の量子コンピューティングフレームワーク
- Authors: Xusheng Xu, Jiangyu Cui, Zidong Cui, Runhong He, Qingyu Li, Xiaowei Li, Yanling Lin, Jiale Liu, Wuxin Liu, Jiale Lu, Maolin Luo, Chufan Lyu, Shijie Pan, Mosharev Pavel, Runqiu Shu, Jialiang Tang, Ruoqian Xu, Shu Xu, Kang Yang, Fan Yu, Qingguo Zeng, Haiying Zhao, Qiang Zheng, Junyuan Zhou, Xu Zhou, Yikang Zhu, Zuoheng Zou, Abolfazl Bayat, Xi Cao, Wei Cui, Zhendong Li, Guilu Long, Zhaofeng Su, Xiaoting Wang, Zizhu Wang, Shijie Wei, Re-Bing Wu, Pan Zhang, Man-Hong Yung,
- Abstract要約: 我々は、ノイズの多い中間スケール量子(NISQ)アルゴリズムに重点を置いた、先駆的なハイブリッド量子古典フレームワークであるMindSpore Quantumを紹介する。
コアフレームワークに加えて,量子コンピューティングアクセラレーションエンジンQuPackを紹介する。
- 参考スコア(独自算出の注目度): 20.585698216552892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MindSpore Quantum, a pioneering hybrid quantum-classical framework with a primary focus on the design and implementation of noisy intermediate-scale quantum (NISQ) algorithms. Leveraging the robust support of MindSpore, an advanced open-source deep learning training/inference framework, MindSpore Quantum exhibits exceptional efficiency in the design and training of variational quantum algorithms on both CPU and GPU platforms, delivering remarkable performance. Furthermore, this framework places a strong emphasis on enhancing the operational efficiency of quantum algorithms when executed on real quantum hardware. This encompasses the development of algorithms for quantum circuit compilation and qubit mapping, crucial components for achieving optimal performance on quantum processors. In addition to the core framework, we introduce QuPack, a meticulously crafted quantum computing acceleration engine. QuPack significantly accelerates the simulation speed of MindSpore Quantum, particularly in variational quantum eigensolver (VQE), quantum approximate optimization algorithm (QAOA), and tensor network simulations, providing astonishing speed. This combination of cutting-edge technologies empowers researchers and practitioners to explore the frontiers of quantum computing with unprecedented efficiency and performance.
- Abstract(参考訳): 我々は、ノイズの多い中間規模量子(NISQ)アルゴリズムの設計と実装に重点を置いた、先駆的なハイブリッド量子古典フレームワークであるMindSpore Quantumを紹介する。
高度なオープンソースのディープラーニングトレーニング/推論フレームワークであるMindSporeの堅牢なサポートを活用して、MindSpore Quantumは、CPUとGPUプラットフォームの両方で変動量子アルゴリズムの設計とトレーニングにおいて、優れたパフォーマンスを提供する。
さらに、このフレームワークは、実際の量子ハードウェア上で実行される場合の量子アルゴリズムの運用効率の向上に重点を置いている。
これは量子回路のコンパイルと量子ビットマッピングのためのアルゴリズムの開発を含み、量子プロセッサ上で最適な性能を達成するための重要なコンポーネントである。
コアフレームワークに加えて,量子コンピューティングアクセラレーションエンジンQuPackを紹介する。
QuPackは、特に変分量子固有解法(VQE)、量子近似最適化アルゴリズム(QAOA)、およびテンソルネットワークシミュレーションにおいて、MindSpore Quantumのシミュレーション速度を著しく加速し、驚くべき速度を提供する。
この最先端技術の組み合わせは、研究者や実践者が前例のない効率と性能で量子コンピューティングのフロンティアを探索することを可能にする。
関連論文リスト
- Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects [0.0]
本稿では,論理回路設計とコンパイル最適化のステップを組み合わせて,アルゴリズムレベルから量子ハードウェアにまたがる統合設計と最適化スキームの実現可能性について検討する。
AIアルゴリズムの異常な認知と学習能力を活用することで、手作業による設計コストを削減し、実行の精度と効率を高め、ハードウェア上での量子アルゴリズムの優位性の実装と検証を容易にする。
論文 参考訳(メタデータ) (2024-06-30T15:50:10Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
本研究では,革新的な分散型量子古典量子アーキテクチャを提案する。
最先端の量子ソフトウェアフレームワークを高性能な古典コンピューティングリソースと統合する。
物質と凝縮物質物理学の量子シミュレーションにおける課題に対処する。
論文 参考訳(メタデータ) (2024-03-09T07:38:45Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Efficient Quantum Modular Arithmetics for the ISQ Era [0.0]
本研究は, モジュラー演算関数の精度向上を目的とした, 量子回路の配列について述べる。
我々はPennyLane量子ソフトウェアにおける理論的枠組みと実践的実装を提供する。
論文 参考訳(メタデータ) (2023-11-14T21:34:39Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
量子コンピューティングの出現は、多くの科学と産業の応用領域を根本的に変換できる革命的パラダイムを提案する。
量子コンピュータが計算をスケールする能力は、現在のコンピュータが提供しているものよりも、特定のアルゴリズムタスクのパフォーマンスと効率が向上することを意味している。
このような改善の恩恵を得るためには、量子コンピュータは既存のソフトウェアシステムと統合されなければならない。
論文 参考訳(メタデータ) (2023-10-04T06:02:59Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
量子処理ユニット(QPU)の出現に伴い、計算パラダイムの分岐点が見られます。
超多項式スピードアップによる計算の可能性を抽出し、量子アルゴリズムを実現するには、量子誤り訂正技術の大幅な進歩が必要になる可能性が高い。
長期的には、より効率的な量子誤り訂正符号を実現するために、2次元トポロジ以上の量子ビット接続を利用するハードウェアが見られます。
論文 参考訳(メタデータ) (2022-09-14T18:00:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。