論文の概要: Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects
- arxiv url: http://arxiv.org/abs/2407.00736v1
- Date: Sun, 30 Jun 2024 15:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:47:18.214192
- Title: Quantum Circuit Synthesis and Compilation Optimization: Overview and Prospects
- Title(参考訳): 量子回路合成とコンパイル最適化:概観と展望
- Authors: Yan Ge, Wu Wenjie, Chen Yuheng, Pan Kaisen, Lu Xudong, Zhou Zixiang, Wang Yuhan, Wang Ruocheng, Yan Junchi,
- Abstract要約: 本稿では,論理回路設計とコンパイル最適化のステップを組み合わせて,アルゴリズムレベルから量子ハードウェアにまたがる統合設計と最適化スキームの実現可能性について検討する。
AIアルゴリズムの異常な認知と学習能力を活用することで、手作業による設計コストを削減し、実行の精度と効率を高め、ハードウェア上での量子アルゴリズムの優位性の実装と検証を容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is regarded as a promising paradigm that may overcome the current computational power bottlenecks in the post-Moore era. The increasing maturity of quantum processors, especially superconducting ones, provides more possibilities for the development and implementation of quantum algorithms. As the crucial stages for quantum algorithm implementation, the logic circuit design and quantum compiling have also received significant attention, which covers key technologies such as quantum logic circuit synthesis (also widely known as quantum architecture search) and optimization, as well as qubit mapping and routing. Recent studies suggest that the scale and precision of related algorithms are steadily increasing, especially with the integration of artificial intelligence methods. In this survey, we systematically review and summarize a vast body of literature, exploring the feasibility of an integrated design and optimization scheme that spans from the algorithmic level to quantum hardware, combining the steps of logic circuit design and compilation optimization. Leveraging the exceptional cognitive and learning capabilities of AI algorithms, one can reduce manual design costs, enhance the precision and efficiency of execution, and facilitate the implementation and validation of the superiority of quantum algorithms on hardware.
- Abstract(参考訳): 量子コンピューティングは、ムーア時代以降の現在の計算パワーボトルネックを克服する有望なパラダイムと見なされている。
量子プロセッサ、特に超伝導プロセッサの成熟度の増加は、量子アルゴリズムの開発と実装により多くの可能性をもたらす。
量子アルゴリズムの実装において重要な段階として、論理回路設計と量子コンパイルが注目されており、量子論理回路合成(量子アーキテクチャサーチとしても広く知られている)や最適化、キュービットマッピングやルーティングといった重要な技術がカバーされている。
近年の研究では、特に人工知能手法の統合により、関連するアルゴリズムのスケールと精度が着実に向上していることが示唆されている。
本研究では,論理回路設計とコンパイル最適化のステップを組み合わせることで,アルゴリズムレベルから量子ハードウェアにまたがる統合設計と最適化スキームの実現可能性を検討する。
AIアルゴリズムの異常な認知と学習能力を活用することで、手作業による設計コストを削減し、実行の精度と効率を高め、ハードウェア上での量子アルゴリズムの優位性の実装と検証を容易にする。
関連論文リスト
- QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
量子アルゴリズムの設計と実装におけるAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
論文 参考訳(メタデータ) (2024-10-10T14:24:30Z) - MindSpore Quantum: A User-Friendly, High-Performance, and AI-Compatible Quantum Computing Framework [20.585698216552892]
我々は、ノイズの多い中間スケール量子(NISQ)アルゴリズムに重点を置いた、先駆的なハイブリッド量子古典フレームワークであるMindSpore Quantumを紹介する。
コアフレームワークに加えて,量子コンピューティングアクセラレーションエンジンQuPackを紹介する。
論文 参考訳(メタデータ) (2024-06-25T03:28:40Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
量子デバイスで物理的に実現可能な低深さ量子回路を開発することが不可欠である。
我々は,最適なアンサッツを動的に調整できるアンサッツ構成プロトコルを開発した。
アンザッツの構成は、エネルギーソートと演算子の可換性事前スクリーニングによって並列量子アーキテクチャで実行される可能性がある。
論文 参考訳(メタデータ) (2023-02-07T11:22:01Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。