論文の概要: D2LLM: Decomposed and Distilled Large Language Models for Semantic Search
- arxiv url: http://arxiv.org/abs/2406.17262v1
- Date: Tue, 25 Jun 2024 04:03:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 15:41:13.224229
- Title: D2LLM: Decomposed and Distilled Large Language Models for Semantic Search
- Title(参考訳): D2LLM:意味探索のための分解・蒸留された大規模言語モデル
- Authors: Zihan Liao, Hang Yu, Jianguo Li, Jun Wang, Wei Zhang,
- Abstract要約: D2LLMs-Decomposed and Distilled LLMs for semantic search。
クロスエンコーダを効率的なバイエンコーダに分解し,マルチヘッド・アテンションとインタラクション・エミュレーション・モジュールによるポーリングと統合する。
実験の結果,D2LLMは3つのタスクにまたがるすべての指標において,主要なベースラインを5つ超えていることがわかった。
- 参考スコア(独自算出の注目度): 18.63768158439252
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs-Decomposed and Distilled LLMs for semantic search-that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%. The source code is available at https://github.com/codefuse-ai/D2LLM.
- Abstract(参考訳): セマンティック検索の鍵となる課題は、クエリに関連する文をピンポイントする上で、正確かつ効率的にモデルを作成することである。
BERTスタイルのバイエンコーダは、事前に計算された埋め込みで効率よく動作するが、検索タスクの微妙なニュアンスを見逃してしまうことが多い。
逆に、クロスエンコーダ設計のGPTスタイルのLCMは、これらのニュアンスをキャプチャするが、計算集約であり、リアルタイムアプリケーションを妨げる。
本稿では,D2LLMs-Decomposed and Distilled LLMs for semantic search- which with the best of both worlds。
我々は,クロスエンコーダをマルチヘッドアテンションによるポーリングとインタラクションエミュレーションモジュールに統合した効率的なバイエンコーダに分解し,ニュアンスな理解と事前計算性を実現する。
LLMからの知識は、コントラスト、ランク、特徴模倣技術を用いて、このモデルに蒸留される。
実験の結果,D2LLMは3つのタスクにまたがるすべての指標において,少なくとも6.45%のNLIタスク性能向上率で,主要なベースラインを5つ越えていることがわかった。
ソースコードはhttps://github.com/codefuse-ai/D2LLMで入手できる。
関連論文リスト
- RRADistill: Distilling LLMs' Passage Ranking Ability for Long-Tail Queries Document Re-Ranking on a Search Engine [2.0379810233726126]
大規模言語モデル(LLM)は、クエリとドキュメント間の意味的関係を理解するのに優れている。
これらのクエリは、少ないユーザエンゲージメントと限られたフィードバックのため、フィードバックベースのランキングでは難しい。
本稿では,エンコーダモデルとデコーダモデルの両方に対して,効率的なラベル生成パイプラインと新しいsLLMトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T11:28:06Z) - Impact of Model Size on Fine-tuned LLM Performance in Data-to-Text Generation: A State-of-the-Art Investigation [1.8876415010297893]
Data-to-text (D2T) の生成は、テーブルやグラフなどの半構造化データから可読なテキストを生成することを目的としている。
D2Tタスク用微調整LDMの性能に及ぼすモデルサイズの影響を示す研究は行われていない。
我々は、広く使われている5つのD2Tデータセットにまたがって、モデルサイズをスケールする利点と限界の両方を解明することを目指している。
論文 参考訳(メタデータ) (2024-07-19T07:54:30Z) - A Systematic Investigation of Distilling Large Language Models into Cross-Encoders for Passage Re-ranking [79.35822270532948]
大規模言語モデル (LLM) から蒸留したクロスエンコーダは、手動でラベル付けされたデータに微調整されたクロスエンコーダよりも効果的であることが多い。
我々は新しい蒸留データセットである Rank-DistiLLM を構築し,リリースする。
論文 参考訳(メタデータ) (2024-05-13T16:51:53Z) - Self-Selected Attention Span for Accelerating Large Language Model Inference [10.305434265471938]
大規模言語モデル(LLM)は困難なタスクを解くことができる。
LLMの推論計算は、新しいトークンを生成する際に出席しなければならないトークンの数が増えるため、非常に非効率である。
LLMの問題解決能力を利用して、推論時間の効率を最適化する。
論文 参考訳(メタデータ) (2024-04-14T19:36:04Z) - LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders [34.421335513040795]
大規模デコーダのみの言語モデル(LLM)は、今日のNLPタスクとベンチマークのほとんどで最先端のモデルである。
LLM2Vecは、任意のデコーダのみのLCMを強力なテキストエンコーダに変換する、単純な教師なしアプローチである。
論文 参考訳(メタデータ) (2024-04-09T02:51:05Z) - MEND: Meta dEmonstratioN Distillation for Efficient and Effective
In-Context Learning [9.271196993624944]
大規模言語モデル(LLM)は、与えられたテスト入力と少数のインプット・アウトプットペア(デモ)を同時に予測する。
既存の解は、長い実演をコンパクトなベクトルに蒸留しようとする。
本稿では,メタdEmonstratioN蒸留(MEND)について述べる。そこでは,言語モデルが,新しい下流タスクを再学習することなく,任意の長い実演をベクトルに蒸留することを学ぶ。
論文 参考訳(メタデータ) (2024-03-11T17:03:04Z) - BOOST: Harnessing Black-Box Control to Boost Commonsense in LMs'
Generation [60.77990074569754]
本稿では,凍結した事前学習言語モデルを,より汎用的な生成に向けて操る,計算効率のよいフレームワークを提案する。
具体的には、まず、文に常識的スコアを割り当てる参照なし評価器を構築する。
次に、スコアラをコモンセンス知識のオラクルとして使用し、NADOと呼ばれる制御可能な生成法を拡張して補助ヘッドを訓練する。
論文 参考訳(メタデータ) (2023-10-25T23:32:12Z) - LM-Infinite: Zero-Shot Extreme Length Generalization for Large Language Models [83.98062659664785]
大規模言語モデル(LLM)は通常、トランスフォーマーアーキテクチャの2次複雑さのために短いテキストセグメント(例:4Kトークン)でトレーニングする。
この研究は、この長大一般化失敗に寄与する3つの主要な要因を特定する。
本研究では,LLMの長期処理能力を高めるための簡易かつ効果的な手法であるLM-Infiniteを提案する。
論文 参考訳(メタデータ) (2023-08-30T16:47:51Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
本研究では,様々な事前学習タスクをマルチタスク事前学習モデル(MASTER)に統合することを目的とする。
MASTERは共有エンコーダのマルチデコーダアーキテクチャを利用して、タスク全体にわたる豊富なセマンティック情報を高密度ベクトルに圧縮する表現ボトルネックを構築することができる。
論文 参考訳(メタデータ) (2022-12-15T13:57:07Z) - Revisiting Code Search in a Two-Stage Paradigm [67.02322603435628]
TOSSは2段階のフュージョンコード検索フレームワークである。
まずIRベースのバイエンコーダモデルを使用して、少数のトップkコード候補を効率的にリコールする。
その後、より微細なクロスエンコーダを使用してランク付けを行う。
論文 参考訳(メタデータ) (2022-08-24T02:34:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。