論文の概要: Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models
- arxiv url: http://arxiv.org/abs/2408.10520v1
- Date: Tue, 20 Aug 2024 03:45:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:22:22.796527
- Title: Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models
- Title(参考訳): 大規模言語モデルによるオープンワールドレコメンデーションのための効率的かつデプロイ可能な知識注入
- Authors: Yunjia Xi, Weiwen Liu, Jianghao Lin, Muyan Weng, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract要約: 大規模言語モデル(LLM)からユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
- 参考スコア(独自算出の注目度): 53.547190001324665
- License:
- Abstract: Recommender systems (RSs) play a pervasive role in today's online services, yet their closed-loop nature constrains their access to open-world knowledge. Recently, large language models (LLMs) have shown promise in bridging this gap. However, previous attempts to directly implement LLMs as recommenders fall short in meeting the requirements of industrial RSs, particularly in terms of online inference latency and offline resource efficiency. Thus, we propose REKI to acquire two types of external knowledge about users and items from LLMs. Specifically, we introduce factorization prompting to elicit accurate knowledge reasoning on user preferences and items. We develop individual knowledge extraction and collective knowledge extraction tailored for different scales of scenarios, effectively reducing offline resource consumption. Subsequently, generated knowledge undergoes efficient transformation and condensation into augmented vectors through a hybridized expert-integrated network, ensuring compatibility. The obtained vectors can then be used to enhance any conventional recommendation model. We also ensure efficient inference by preprocessing and prestoring the knowledge from LLMs. Experiments demonstrate that REKI outperforms state-of-the-art baselines and is compatible with lots of recommendation algorithms and tasks. Now, REKI has been deployed to Huawei's news and music recommendation platforms and gained a 7% and 1.99% improvement during the online A/B test.
- Abstract(参考訳): 今日のオンラインサービスでは、レコメンダシステム(RS)が広く利用されているが、クローズループの性質は、オープンワールドの知識へのアクセスを制限している。
最近、大きな言語モデル(LLM)は、このギャップを埋める可能性を示しています。
しかし、従来のレコメンデーションでは、特にオンライン推論遅延とオフラインリソース効率の観点から、産業用RSの要件を満たしていないため、LSMを直接実装する試みがあった。
そこで本研究では,LLMからユーザとアイテムに関する2種類の外部知識を取得するためのREKIを提案する。
具体的には,ユーザの嗜好や項目に基づいて,正確な知識の推論を促す因子化手法を提案する。
個別の知識抽出と個別の知識抽出を,異なるシナリオのスケールに合わせて開発し,オフラインのリソース消費を効果的に削減する。
その後、生成した知識は、ハイブリッド化されたエキスパート統合ネットワークを介して、効率的な変換と拡張ベクトルへの凝縮を行い、互換性を確保する。
得られたベクトルは、任意の従来のレコメンデーションモデルを強化するために使用できる。
また,LLMからの知識を前処理し,前処理することで,効率的な推論を実現する。
実験によると、REKIは最先端のベースラインより優れており、多くの推奨アルゴリズムやタスクと互換性がある。
現在、REKIはHuaweiのニュースおよび音楽レコメンデーションプラットフォームにデプロイされており、オンラインA/Bテストで7%と1.99%改善されている。
関連論文リスト
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning [40.53821858897774]
本稿では,Large Language Models (LLMs) とKGs (KGs) を相乗する新しいレコメンデータを紹介し,そのレコメンデーションを強化し,解釈可能な結果を提供する。
提案手法は,レコメンデータシステムの有効性と解釈性を両立させる。
論文 参考訳(メタデータ) (2024-06-22T14:14:03Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
大規模テキストコーパスで事前訓練されたLarge Language Models (LLMs) は、推奨システムを強化するための有望な道を示す。
オープンワールドの知識と協調的な知識を相乗化するLlm-driven knowlEdge Adaptive RecommeNdation (LEARN) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T04:00:30Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
セッションベースレコメンデーション(SBR)を強化するための有望なアプローチとして,大規模言語モデル(LLM)が登場している。
本稿では,SBRのための反射強化大言語モデル(Re2LLM)を提案する。
論文 参考訳(メタデータ) (2024-03-25T05:12:18Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。