Generative Modelling of Structurally Constrained Graphs
- URL: http://arxiv.org/abs/2406.17341v1
- Date: Tue, 25 Jun 2024 07:54:32 GMT
- Title: Generative Modelling of Structurally Constrained Graphs
- Authors: Manuel Madeira, Clement Vignac, Dorina Thanou, Pascal Frossard,
- Abstract summary: We present ConStruct, a novel framework that allows for hard-constraining graph diffusion models to incorporate specific properties, such as planarity or acyclicity.
Our approach ensures that the sampled graphs remain within the domain of graphs that verify the specified property throughout the entire trajectory in both the forward and reverse processes.
- Score: 44.28728853270471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph diffusion models have emerged as state-of-the-art techniques in graph generation, yet integrating domain knowledge into these models remains challenging. Domain knowledge is particularly important in real-world scenarios, where invalid generated graphs hinder deployment in practical applications. Unconstrained and conditioned graph generative models fail to guarantee such domain-specific structural properties. We present ConStruct, a novel framework that allows for hard-constraining graph diffusion models to incorporate specific properties, such as planarity or acyclicity. Our approach ensures that the sampled graphs remain within the domain of graphs that verify the specified property throughout the entire trajectory in both the forward and reverse processes. This is achieved by introducing a specific edge-absorbing noise model and a new projector operator. ConStruct demonstrates versatility across several structural and edge-deletion invariant constraints and achieves state-of-the-art performance for both synthetic benchmarks and attributed real-world datasets. For example, by leveraging planarity in digital pathology graph datasets, the proposed method outperforms existing baselines and enhances generated data validity by up to 71.1 percentage points.
Related papers
- SeaDAG: Semi-autoregressive Diffusion for Conditional Directed Acyclic Graph Generation [83.52157311471693]
We introduce SeaDAG, a semi-autoregressive diffusion model for conditional generation of Directed Acyclic Graphs (DAGs)
Unlike conventional autoregressive generation that lacks a global graph structure view, our method maintains a complete graph structure at each diffusion step.
We explicitly train the model to learn graph conditioning with a condition loss, which enhances the diffusion model's capacity to generate realistic DAGs.
arXiv Detail & Related papers (2024-10-21T15:47:03Z) - AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
Graph foundation models offer the potential to learn robust, generalizable representations from graph data.
In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges.
Our experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph.
arXiv Detail & Related papers (2024-08-20T09:57:13Z) - Generative Modeling of Graphs via Joint Diffusion of Node and Edge
Attributes [16.07858156813397]
We propose a joint score-based model of nodes and edges for graph generation that considers all graph components.
Our approach offers two key novelties: (i) node and edge attributes are combined in an attention module that generates samples based on the two ingredients.
We evaluate our method on challenging benchmarks involving real-world and synthetic datasets in which edge features are crucial.
arXiv Detail & Related papers (2024-02-06T14:48:34Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - SCGG: A Deep Structure-Conditioned Graph Generative Model [9.046174529859524]
A conditional deep graph generation method called SCGG considers a particular type of structural conditions.
The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end.
Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-20T12:33:50Z) - Iterative Scene Graph Generation [55.893695946885174]
Scene graph generation involves identifying object entities and their corresponding interaction predicates in a given image (or video)
Existing approaches to scene graph generation assume certain factorization of the joint distribution to make the estimation iteration feasible.
We propose a novel framework that addresses this limitation, as well as introduces dynamic conditioning on the image.
arXiv Detail & Related papers (2022-07-27T10:37:29Z) - Energy-Based Learning for Scene Graph Generation [26.500496033477127]
We introduce a novel energy-based learning framework for generating scene graphs.
The proposed formulation allows for efficiently incorporating the structure of scene graphs in the output space.
We use the proposed framework to train existing state-of-the-art models and obtain a significant performance improvement.
arXiv Detail & Related papers (2021-03-03T07:11:23Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.