Consensus Learning with Deep Sets for Essential Matrix Estimation
- URL: http://arxiv.org/abs/2406.17414v2
- Date: Sat, 02 Nov 2024 11:05:02 GMT
- Title: Consensus Learning with Deep Sets for Essential Matrix Estimation
- Authors: Dror Moran, Yuval Margalit, Guy Trostianetsky, Fadi Khatib, Meirav Galun, Ronen Basri,
- Abstract summary: We propose a simpler network architecture based on Deep Sets.
Our method identifies outlier point matches and models the displacement noise in inlier matches.
A weighted DLT module uses these predictions to regress the essential matrix.
- Score: 12.363338401943887
- License:
- Abstract: Robust estimation of the essential matrix, which encodes the relative position and orientation of two cameras, is a fundamental step in structure from motion pipelines. Recent deep-based methods achieved accurate estimation by using complex network architectures that involve graphs, attention layers, and hard pruning steps. Here, we propose a simpler network architecture based on Deep Sets. Given a collection of point matches extracted from two images, our method identifies outlier point matches and models the displacement noise in inlier matches. A weighted DLT module uses these predictions to regress the essential matrix. Our network achieves accurate recovery that is superior to existing networks with significantly more complex architectures.
Related papers
- Scale Propagation Network for Generalizable Depth Completion [16.733495588009184]
We propose a novel scale propagation normalization (SP-Norm) method to propagate scales from input to output.
We also develop a new network architecture based on SP-Norm and the ConvNeXt V2 backbone.
Our model consistently achieves the best accuracy with faster speed and lower memory when compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T03:53:06Z) - Multi-Level Aggregation and Recursive Alignment Architecture for Efficient Parallel Inference Segmentation Network [18.47001817385548]
We propose a parallel inference network customized for semantic segmentation tasks.
We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy.
Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets.
arXiv Detail & Related papers (2024-02-03T22:51:17Z) - On Characterizing the Evolution of Embedding Space of Neural Networks
using Algebraic Topology [9.537910170141467]
We study how the topology of feature embedding space changes as it passes through the layers of a well-trained deep neural network (DNN) through Betti numbers.
We demonstrate that as depth increases, a topologically complicated dataset is transformed into a simple one, resulting in Betti numbers attaining their lowest possible value.
arXiv Detail & Related papers (2023-11-08T10:45:12Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
We present a novel learning-based alignment network for complex alignment scenes.
We validate our approach on the 3DMatch dataset and the KITTI odometry dataset.
arXiv Detail & Related papers (2021-11-15T08:27:21Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
Boundary-Aware Network (BASNet) is integrated with a predict-refine architecture and a hybrid loss for highly accurate image segmentation.
BASNet runs at over 70 fps on a single GPU which benefits many potential real applications.
Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is augmented reality for "COPY" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal.
arXiv Detail & Related papers (2021-01-12T19:20:26Z) - An End to End Network Architecture for Fundamental Matrix Estimation [14.297068346634351]
We present a novel end-to-end network architecture to estimate fundamental matrix directly from stereo images.
Different deep neural networks in charge of finding correspondences in images, performing outlier rejection and calculating fundamental matrix, are integrated into an end-to-end network architecture.
arXiv Detail & Related papers (2020-10-29T12:48:43Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - AutoPose: Searching Multi-Scale Branch Aggregation for Pose Estimation [96.29533512606078]
We present AutoPose, a novel neural architecture search(NAS) framework.
It is capable of automatically discovering multiple parallel branches of cross-scale connections towards accurate and high-resolution 2D human pose estimation.
arXiv Detail & Related papers (2020-08-16T22:27:43Z) - Augmented Parallel-Pyramid Net for Attention Guided Pose-Estimation [90.28365183660438]
This paper proposes an augmented parallel-pyramid net with attention partial module and differentiable auto-data augmentation.
We define a new pose search space where the sequences of data augmentations are formulated as a trainable and operational CNN component.
Notably, our method achieves the top-1 accuracy on the challenging COCO keypoint benchmark and the state-of-the-art results on the MPII datasets.
arXiv Detail & Related papers (2020-03-17T03:52:17Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.