論文の概要: TRIP: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision
- arxiv url: http://arxiv.org/abs/2406.17483v1
- Date: Tue, 25 Jun 2024 12:04:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:32:18.405588
- Title: TRIP: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision
- Title(参考訳): TRIP:イベントベースビジョンに基づくハードウェア効率の良いニューロモルフィック処理のための学習領域の関心領域予測
- Authors: Cina Arjmand, Yingfu Xu, Kevin Shidqi, Alexandra F. Dobrita, Kanishkan Vadivel, Paul Detterer, Manolis Sifalakis, Amirreza Yousefzadeh, Guangzhi Tang,
- Abstract要約: Trainable Region-of-Interest Prediction (TRIP) は、ニューロモルフィックプロセッサ上でのイベントベースの視覚処理のためのフレームワークである。
TRIPはスパースイベント固有の低情報密度を利用してROI予測のオーバーヘッドを削減する。
我々の解法は、最先端の計算よりも46倍少ない精度で計算する必要がある。
- 参考スコア(独自算出の注目度): 33.803108353747305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic processors are well-suited for efficiently handling sparse events from event-based cameras. However, they face significant challenges in the growth of computing demand and hardware costs as the input resolution increases. This paper proposes the Trainable Region-of-Interest Prediction (TRIP), the first hardware-efficient hard attention framework for event-based vision processing on a neuromorphic processor. Our TRIP framework actively produces low-resolution Region-of-Interest (ROIs) for efficient and accurate classification. The framework exploits sparse events' inherent low information density to reduce the overhead of ROI prediction. We introduced extensive hardware-aware optimizations for TRIP and implemented the hardware-optimized algorithm on the SENECA neuromorphic processor. We utilized multiple event-based classification datasets for evaluation. Our approach achieves state-of-the-art accuracies in all datasets and produces reasonable ROIs with varying locations and sizes. On the DvsGesture dataset, our solution requires 46x less computation than the state-of-the-art while achieving higher accuracy. Furthermore, TRIP enables more than 2x latency and energy improvements on the SENECA neuromorphic processor compared to the conventional solution.
- Abstract(参考訳): ニューロモルフィックプロセッサは、イベントベースのカメラからのスパースイベントを効率的に処理するのに適している。
しかし、入力解像度が増大するにつれて、コンピューティングの需要とハードウェアコストが増大する中で、大きな課題に直面している。
本稿では,ニューロモルフィックプロセッサ上でのイベントベースの視覚処理のためのハードウェア効率の高い最初のハードアテンションフレームワークであるTraiable Region-of-Interest Prediction (TRIP)を提案する。
我々のTRIPフレームワークは、効率的かつ正確な分類のために、低解像度のRerea-of-Interest(ROI)を積極的に生成する。
このフレームワークはスパースイベント固有の低情報密度を利用してROI予測のオーバーヘッドを低減する。
TRIPのハードウェア対応最適化を導入し,SENECAニューロモーフィックプロセッサ上でハードウェア最適化アルゴリズムを実装した。
複数のイベントベース分類データセットを用いて評価を行った。
提案手法は,すべてのデータセットにおける最先端の精度を実現し,位置や大きさの異なる適切なROIを生成する。
DvsGestureデータセットでは、我々の解は最先端の計算よりも46倍少ない精度で計算できる。
さらに、TRIPは従来のソリューションに比べて2倍以上のレイテンシとエネルギーをSENECAニューロモルフィックプロセッサ上で実現している。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Dynamic Range Reduction via Branch-and-Bound [1.533133219129073]
ハードウェアアクセラレーターを強化するための主要な戦略は、算術演算における精度の低下である。
本稿ではQUBO問題における精度向上のための完全原理分岐境界アルゴリズムを提案する。
実験は、実際の量子アニール上でのアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-17T03:07:56Z) - EfficientMorph: Parameter-Efficient Transformer-Based Architecture for 3D Image Registration [1.741980945827445]
教師なし3次元画像登録のためのトランスフォーマーベースアーキテクチャであるEfficientMorphを提案する。
航空機をベースとしたアテンション機構を通じて、地域と世界的なアテンションのバランスを最適化する。
カスケードされたグループアテンションによって計算の冗長性を低減し、計算効率を損なうことなく細部をキャプチャする。
論文 参考訳(メタデータ) (2024-03-16T22:01:55Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - DANCE: DAta-Network Co-optimization for Efficient Segmentation Model
Training and Inference [85.02494022662505]
DANCEは、効率的なセグメンテーションモデルのトレーニングと推論のための自動データネットワーク協調最適化である。
入力イメージを適応的にダウンサンプル/ドロップする自動データスライミングを統合し、画像の空間的複雑さによって導かれるトレーニング損失に対するそれに対応するコントリビューションを制御する。
実験と非難研究により、DANCEは効率的なセグメンテーションに向けて「オールウィン」を達成できることを示した。
論文 参考訳(メタデータ) (2021-07-16T04:58:58Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Automated Design Space Exploration for optimised Deployment of DNN on
Arm Cortex-A CPUs [13.628734116014819]
組み込みデバイスにおけるディープラーニングは、ディープニューラルネットワーク(DNN)のデプロイを最適化する多くの方法の開発を促している。
テストし、グローバルに最適化されたソリューションを得るには、アプローチの空間が大きすぎるため、クロスレベル最適化に関する研究が不足している。
我々は、Arm Cortex-A CPUプラットフォーム上での最先端DNNの一連の結果を示し、最大4倍の性能向上とメモリの2倍以上の削減を実現した。
論文 参考訳(メタデータ) (2020-06-09T11:00:06Z) - Selective Convolutional Network: An Efficient Object Detector with
Ignoring Background [28.591619763438054]
Selective Convolutional Network (SCN) と呼ばれる効率的なオブジェクト検出器を導入し、意味のある情報を含む場所のみを選択的に計算する。
そこで本稿では,ネットワークの次を導くためのオーバーヘッドを無視できるような,精巧な構造を設計する。
論文 参考訳(メタデータ) (2020-02-04T10:07:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。