論文の概要: MaskAttn-UNet: A Mask Attention-Driven Framework for Universal Low-Resolution Image Segmentation
- arxiv url: http://arxiv.org/abs/2503.10686v1
- Date: Tue, 11 Mar 2025 22:43:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:16.483371
- Title: MaskAttn-UNet: A Mask Attention-Driven Framework for Universal Low-Resolution Image Segmentation
- Title(参考訳): MaskAttn-UNet: 普遍的低解像度画像分割のためのマスク注意駆動フレームワーク
- Authors: Anzhe Cheng, Chenzhong Yin, Yu Chang, Heng Ping, Shixuan Li, Shahin Nazarian, Paul Bogdan,
- Abstract要約: MaskAttn-UNetはマスクアテンション機構を通じて従来のU-Netアーキテクチャを強化する新しいセグメンテーションフレームワークである。
本モデルでは,無関係な背景を抑えながら重要な領域を選択的に強調し,乱れや複雑なシーンのセグメンテーション精度を向上させる。
以上の結果から,MaskAttn-UNetは変圧器モデルよりも計算コストが大幅に低く,最先端の手法に匹敵する精度を達成できた。
- 参考スコア(独自算出の注目度): 5.130440339897479
- License:
- Abstract: Low-resolution image segmentation is crucial in real-world applications such as robotics, augmented reality, and large-scale scene understanding, where high-resolution data is often unavailable due to computational constraints. To address this challenge, we propose MaskAttn-UNet, a novel segmentation framework that enhances the traditional U-Net architecture via a mask attention mechanism. Our model selectively emphasizes important regions while suppressing irrelevant backgrounds, thereby improving segmentation accuracy in cluttered and complex scenes. Unlike conventional U-Net variants, MaskAttn-UNet effectively balances local feature extraction with broader contextual awareness, making it particularly well-suited for low-resolution inputs. We evaluate our approach on three benchmark datasets with input images rescaled to 128x128 and demonstrate competitive performance across semantic, instance, and panoptic segmentation tasks. Our results show that MaskAttn-UNet achieves accuracy comparable to state-of-the-art methods at significantly lower computational cost than transformer-based models, making it an efficient and scalable solution for low-resolution segmentation in resource-constrained scenarios.
- Abstract(参考訳): 低解像度画像のセグメンテーションは、ロボット工学、拡張現実、大規模シーン理解といった現実世界の応用において重要である。
この課題に対処するために,マスクアテンション機構を通じて従来のU-Netアーキテクチャを強化する新しいセグメンテーションフレームワークであるMaskAttn-UNetを提案する。
本モデルでは,無関係な背景を抑えながら重要な領域を選択的に強調し,乱れや複雑なシーンのセグメンテーション精度を向上させる。
従来のU-Netと異なり、MaskAttn-UNetは局所的な特徴抽出とより広い文脈での認識のバランスを取り、特に低解像度入力に適している。
入力画像を128x128に再スケールした3つのベンチマークデータセットに対するアプローチを評価し、セマンティクス、例えば、パノプティクスのセグメンテーションタスク間での競合性能を実証した。
以上の結果から,MaskAttn-UNetはトランスフォーマーモデルよりも計算コストが大幅に低く,最先端の手法に匹敵する精度を達成し,資源制約シナリオにおける低分解能セグメンテーションのための効率的かつスケーラブルな解であることがわかった。
関連論文リスト
- Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation [70.95380821618711]
Dichotomous Image (DIS) タスクは高度に正確なアノテーションを必要とする。
現在の生成モデルとテクニックは、シーンのずれ、ノイズによるエラー、限られたトレーニングサンプルの変動といった問題に苦慮している。
多様な正確なデータセットを生成するためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-12-26T06:37:25Z) - Resource-Efficient Multiview Perception: Integrating Semantic Masking with Masked Autoencoders [6.498925999634298]
本稿では、マスク付きオートエンコーダ(MAE)を用いた通信効率の高い分散マルチビュー検出と追跡のための新しい手法を提案する。
本稿では,事前訓練されたセグメンテーションモデルと調整可能なパワー関数を利用して,情報領域の優先順位付けを行う意味誘導型マスキング手法を提案する。
我々は,仮想および実世界のマルチビューデータセットを用いて本手法の評価を行い,性能指標の検出と追跡において同等の性能を示す。
論文 参考訳(メタデータ) (2024-10-07T08:06:41Z) - On the Effect of Image Resolution on Semantic Segmentation [27.115235051091663]
本研究では,高分解能セグメンテーションを直接生成できるモデルが,より複雑なシステムの性能と一致することを示す。
提案手法は,ボトムアップ情報伝搬手法を様々なスケールで活用する。
先進的なセマンティックセグメンテーションデータセットを用いて,本手法を厳格に検証した。
論文 参考訳(メタデータ) (2024-02-08T04:21:30Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
本稿では,長いキャプションから密接な視覚的実体を抽出する手法を提案する。
本研究では,意味代名詞の抽出に大規模なマルチモーダルモデル,エンティティレベルのセグメンテーションを生成するクラス-aセグメンテーションモデル,および各セグメンテーション名詞と対応するセグメンテーションマスクを関連付けるマルチモーダル特徴融合モジュールを利用する。
論文 参考訳(メタデータ) (2024-02-04T16:06:05Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
我々は,グローバルコンテキストを計算コストの大幅な削減で捉えるために,低解像度自己認識(LRSA)機構を導入する。
我々のアプローチは、入力画像の解像度に関わらず、固定された低解像度空間における自己注意を計算することである。
本稿では,エンコーダ・デコーダ構造を持つビジョントランスであるLRFormerを構築することで,LRSA手法の有効性を示す。
論文 参考訳(メタデータ) (2023-10-08T06:10:09Z) - CM-MaskSD: Cross-Modality Masked Self-Distillation for Referring Image
Segmentation [29.885991324519463]
本稿では,CM-MaskSD という新しいクロスモーダルマスク型自己蒸留フレームワークを提案する。
提案手法は,CLIPモデルから画像テキストセマンティックアライメントの伝達知識を継承し,きめ細かいパッチワード特徴アライメントを実現する。
我々のフレームワークはパラメータフリーに近い方法でモデル性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-05-19T07:17:27Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
現在、多くのアートモデルはMask R-CNNフレームワークに基づいている。
本稿では,両世界の長所を結合したR-CNNを提案する。
我々はCOCOおよびCityscapesデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-07-30T17:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。