論文の概要: Modularity Based Community Detection in Hypergraphs
- arxiv url: http://arxiv.org/abs/2406.17556v1
- Date: Tue, 25 Jun 2024 13:49:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:11:55.533433
- Title: Modularity Based Community Detection in Hypergraphs
- Title(参考訳): ハイパーグラフにおけるモジュール性に基づくコミュニティ検出
- Authors: Bogumił Kamiński, Paweł Misiorek, Paweł Prałat, François Théberge,
- Abstract要約: ハイパーグラフモジュラリティ関数h-Louvainを用いたスケーラブルなコミュニティ検出アルゴリズムを提案する。
これは、ハイパーグラフの文脈における古典的なルーヴァンアルゴリズムの適応である。
- 参考スコア(独自算出の注目度): 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a scalable community detection algorithm using hypergraph modularity function, h-Louvain. It is an adaptation of the classical Louvain algorithm in the context of hypergraphs. We observe that a direct application of the Louvain algorithm to optimize the hypergraph modularity function often fails to find meaningful communities. We propose a solution to this issue by adjusting the initial stage of the algorithm via carefully and dynamically tuned linear combination of the graph modularity function of the corresponding two-section graph and the desired hypergraph modularity function. The process is guided by Bayesian optimization of the hyper-parameters of the proposed procedure. Various experiments on synthetic as well as real-world networks are performed showing that this process yields improved results in various regimes.
- Abstract(参考訳): 本稿では,ハイパーグラフモジュラリティ関数h-Louvainを用いたスケーラブルなコミュニティ検出アルゴリズムを提案する。
これは、ハイパーグラフの文脈における古典的なルーヴァンアルゴリズムの適応である。
ハイパーグラフのモジュラリティ関数を最適化するためのルービンアルゴリズムの直接的な応用は、しばしば意味のあるコミュニティを見つけるのに失敗する。
本稿では,対応する2区間グラフのグラフモジュラリティ関数と所望のハイパーグラフモジュラリティ関数の線形結合を慎重に動的に調整することで,アルゴリズムの初期段階を調整し,この問題に対する解決策を提案する。
このプロセスは,提案手法のハイパーパラメータのベイズ最適化によって導かれる。
合成および実世界のネットワークに関する様々な実験を行い、このプロセスは様々な状況において改善された結果をもたらすことを示した。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Optimal Algorithms for Stochastic Bilevel Optimization under Relaxed
Smoothness Conditions [9.518010235273785]
両レベル最適化のための完全リリップループ・ヘシアン・インバージョンフリーなアルゴリズム・フレームワークを提案する。
我々は、我々のアプローチを少し修正することで、より汎用的な多目的ロバストな双レベル最適化問題に対処できることを示した。
論文 参考訳(メタデータ) (2023-06-21T07:32:29Z) - Online Dynamic Submodular Optimization [0.0]
オンラインバイナリ最適化のための証明可能な性能を持つ新しいアルゴリズムを提案する。
高速な需要応答とリアルタイム分散ネットワーク再構成という2つのパワーシステムアプリケーションでアルゴリズムを数値的にテストする。
論文 参考訳(メタデータ) (2023-06-19T10:37:15Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Fast and Provably Convergent Algorithms for Gromov-Wasserstein in Graph
Learning [37.89640056739607]
2つのアルゴリズム、Bregman Alternating Projected Gradient (BAPG) とハイブリッドBregman Proximal Gradient (hBPG) は(ほぼ)収束することが証明されている。
グラフアライメント,グラフ分割,形状マッチングなど,タスクのホスト上での手法の有効性を検証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-05-17T06:26:54Z) - Learning Sparse Graphs via Majorization-Minimization for Smooth Node
Signals [8.140698535149042]
本稿では,その隣接行列を推定することにより,スパース重み付きグラフを学習するアルゴリズムを提案する。
提案アルゴリズムは,本論文におけるいくつかの既存手法よりも,平均反復回数の観点から,より高速に収束することを示す。
論文 参考訳(メタデータ) (2022-02-06T17:06:13Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
本稿では,ハイパーグラフのスペクトル(構造)特性を保存するために,効率的なスペクトルハイパーグラフ粗大化手法を提案する。
提案手法は,ハイパーグラフクラスタリングのマルチウェイコンダクタンスを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2021-08-17T22:20:23Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
本稿では,この問題クラスにおける近位アルゴリズムの適応型事前条件付け手法を提案する。
不活性エッジのネスト・フォレスト分解により局所収束速度が保証されることを示す。
この結果から,局所収束解析は近似アルゴリズムにおける可変指標選択の指針となることが示唆された。
論文 参考訳(メタデータ) (2020-02-27T16:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。