論文の概要: YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search
- arxiv url: http://arxiv.org/abs/2406.17610v1
- Date: Tue, 25 Jun 2024 14:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:11:55.525331
- Title: YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search
- Title(参考訳): YAQQ: もう1つの量子量子化器 -- ノベルティ探索を用いた量子ゲートセットの設計空間探索
- Authors: Aritra Sarkar, Akash Kundu, Matthew Steinberg, Sibasish Mishra, Sebastiaan Fauquenot, Tamal Acharya, Jarosław A. Miszczak, Sebastian Feld,
- Abstract要約: 本稿では,量子処理ユニットと制御プロトコルのネイティブゲートに基づく比較解析を行うソフトウェアツールを提案する。
開発されたソフトウェアYAQQ(Yet Another Quantum Quantizer)は、最適化された量子ゲートセットの発見を可能にする。
- 参考スコア(独自算出の注目度): 0.9932551365711049
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the standard circuit model of quantum computation, the number and quality of the quantum gates composing the circuit influence the runtime and fidelity of the computation. The fidelity of the decomposition of quantum algorithms, represented as unitary matrices, to bounded depth quantum circuits depends strongly on the set of gates available for the decomposition routine. To investigate this dependence, we explore the design space of discrete quantum gate sets and present a software tool for comparative analysis of quantum processing units and control protocols based on their native gates. The evaluation is conditioned on a set of unitary transformations representing target use cases on the quantum processors. The cost function considers three key factors: (i) the statistical distribution of the decomposed circuits' depth, (ii) the statistical distribution of process fidelities for the approximate decomposition, and (iii) the relative novelty of a gate set compared to other gate sets in terms of the aforementioned properties. The developed software, YAQQ (Yet Another Quantum Quantizer), enables the discovery of an optimized set of quantum gates through this tunable joint cost function. To identify these gate sets, we use the novelty search algorithm, circuit decomposition techniques, and stochastic optimization to implement YAQQ within the Qiskit quantum simulator environment. YAQQ exploits reachability tradeoffs conceptually derived from quantum algorithmic information theory. Our results demonstrate the pragmatic application of identifying gate sets that are advantageous to popularly used quantum gate sets in representing quantum algorithms. Consequently, we demonstrate pragmatic use cases of YAQQ in comparing transversal logical gate sets in quantum error correction codes, designing optimal quantum instruction sets, and compiling to specific quantum processors.
- Abstract(参考訳): 量子計算の標準的な回路モデルでは、回路を構成する量子ゲートの数と品質が計算のランタイムと忠実性に影響を与える。
ユニタリ行列として表される量子アルゴリズムの分解の完全性は、境界深さ量子回路に対する分解ルーチンで利用可能なゲートの集合に強く依存する。
本研究は、離散量子ゲートセットの設計空間を探索し、その固有ゲートに基づく量子処理ユニットと制御プロトコルの比較分析を行うソフトウェアツールを提案する。
評価は、量子プロセッサ上のターゲットユースケースを表すユニタリ変換のセットに条件付けされる。
コスト関数には3つの重要な要素がある。
(i)分解回路の深さの統計分布
二 近似分解のためのプロセス忠実度の統計分布及び
三 上記プロパティの点で他のゲートセットと比較して門の相対的な新規性
開発されたソフトウェアYAQQ(Yet Another Quantum Quantizer)は、このチューニング可能なジョイントコスト関数を通じて、最適化された量子ゲートのセットを発見できる。
これらのゲートセットを同定するために、Qiskit量子シミュレータ環境内でYAQQを実装するために、新規探索アルゴリズム、回路分解手法、確率最適化を用いる。
YAQQは、概念的には量子アルゴリズム情報理論から派生した到達可能性トレードオフを利用する。
本研究は,量子アルゴリズムの表現において広く用いられる量子ゲート集合に有利なゲート集合を同定する実用的応用を実証するものである。
その結果,量子誤り訂正符号における横方向論理ゲートセットの比較,最適量子命令セットの設計,特定の量子プロセッサへのコンパイルにおいて,YAQQの実用例を示す。
関連論文リスト
- Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
本稿では,量子回路のアンサーゼの表現可能性を予測するために,トランスフォーマーモデルを提案する。
本研究は、量子回路アンサーゼの表現可能性の理解を深め、量子アーキテクチャ探索アルゴリズムを進化させることが可能である。
論文 参考訳(メタデータ) (2024-05-29T07:34:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
量子回路として表現される量子アルゴリズムは、量子システムの性能を評価するためのベンチマークとして用いられる。
しかしランダム回路は、実際の量子アルゴリズム固有の性質を欠いているため、代表的なベンチマークではない。
この研究は、我々が「リアルに見える」回路と呼ぶものを生成することによって、既存の量子回路データセットを強化することを目的としている。
論文 参考訳(メタデータ) (2024-02-20T20:02:21Z) - Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
我々は、実量子ハードウェアを用いて、普遍的な2量子エンタングゲートであるSQSCZゲートを徹底的に解析する。
我々の分析では、SQSCZゲートの圧縮可能な忠実度とノイズ特性を明らかにし、プロセス忠実度はそれぞれ97.27098%$と8.99383%$に達した。
論文 参考訳(メタデータ) (2024-02-10T13:25:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
本研究はモンテカルログラフ探索に基づく量子アーキテクチャ探索アルゴリズムと重要サンプリングの尺度を提案する。
これは、離散ゲートと連続変数を含むゲートの両方に対して、ゲートオーダーの最適化に適用できる。
論文 参考訳(メタデータ) (2023-07-14T14:01:25Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Variational quantum compiling with double Q-learning [0.37798600249187286]
強化学習(RL)に基づく変分量子コンパイル(VQC)アルゴリズムを提案する。
エージェントは、ネイティブゲートアルファベットとそれらが行う量子ビットから、二重Q学習によって順次量子ゲートを選択するように訓練される。
NISQデバイスのデコヒーレンスプロセスとゲートノイズによる量子アルゴリズムのエラーを減らすことができます。
論文 参考訳(メタデータ) (2021-03-22T06:46:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。