YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search
- URL: http://arxiv.org/abs/2406.17610v1
- Date: Tue, 25 Jun 2024 14:55:35 GMT
- Title: YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search
- Authors: Aritra Sarkar, Akash Kundu, Matthew Steinberg, Sibasish Mishra, Sebastiaan Fauquenot, Tamal Acharya, Jarosław A. Miszczak, Sebastian Feld,
- Abstract summary: We present a software tool for comparative analysis of quantum processing units and control protocols based on their native gates.
The developed software, YAQQ (Yet Another Quantum Quantizer), enables the discovery of an optimized set of quantum gates.
- Score: 0.9932551365711049
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the standard circuit model of quantum computation, the number and quality of the quantum gates composing the circuit influence the runtime and fidelity of the computation. The fidelity of the decomposition of quantum algorithms, represented as unitary matrices, to bounded depth quantum circuits depends strongly on the set of gates available for the decomposition routine. To investigate this dependence, we explore the design space of discrete quantum gate sets and present a software tool for comparative analysis of quantum processing units and control protocols based on their native gates. The evaluation is conditioned on a set of unitary transformations representing target use cases on the quantum processors. The cost function considers three key factors: (i) the statistical distribution of the decomposed circuits' depth, (ii) the statistical distribution of process fidelities for the approximate decomposition, and (iii) the relative novelty of a gate set compared to other gate sets in terms of the aforementioned properties. The developed software, YAQQ (Yet Another Quantum Quantizer), enables the discovery of an optimized set of quantum gates through this tunable joint cost function. To identify these gate sets, we use the novelty search algorithm, circuit decomposition techniques, and stochastic optimization to implement YAQQ within the Qiskit quantum simulator environment. YAQQ exploits reachability tradeoffs conceptually derived from quantum algorithmic information theory. Our results demonstrate the pragmatic application of identifying gate sets that are advantageous to popularly used quantum gate sets in representing quantum algorithms. Consequently, we demonstrate pragmatic use cases of YAQQ in comparing transversal logical gate sets in quantum error correction codes, designing optimal quantum instruction sets, and compiling to specific quantum processors.
Related papers
- Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - Full Quantum Process Tomography of a Universal Entangling Gate on an
IBM's Quantum Computer [0.0]
We conduct a thorough analysis of the SQSCZ gate, a universal two-qubit entangling gate, using real quantum hardware.
Our analysis unveils commendable fidelities and noise properties of the SQSCZ gate, with process fidelities reaching $97.27098%$ and $88.99383%$, respectively.
arXiv Detail & Related papers (2024-02-10T13:25:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
This work proposes a quantum architecture search algorithm based on a Monte Carlo graph search and measures of importance sampling.
It is applicable to the optimization of gate order, both for discrete gates, as well as gates containing continuous variables.
arXiv Detail & Related papers (2023-07-14T14:01:25Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational quantum compiling with double Q-learning [0.37798600249187286]
We propose a variational quantum compiling (VQC) algorithm based on reinforcement learning (RL)
An agent is trained to sequentially select quantum gates from the native gate alphabet and the qubits they act on by double Q-learning.
It can reduce the errors of quantum algorithms due to decoherence process and gate noise in NISQ devices.
arXiv Detail & Related papers (2021-03-22T06:46:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.