Redesign Quantum Circuits on Quantum Hardware Device
- URL: http://arxiv.org/abs/2412.20893v1
- Date: Mon, 30 Dec 2024 12:05:09 GMT
- Title: Redesign Quantum Circuits on Quantum Hardware Device
- Authors: Runhong He, Ji Guan, Xin Hong, Xusheng Xu, Guolong Cui, Shengbin Wang, Shenggang Ying,
- Abstract summary: We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
- Score: 6.627541720714792
- License:
- Abstract: In the process of exploring quantum algorithms, researchers often need to conduct equivalence checking of quantum circuits with different structures or to reconstruct a circuit in a variational manner, aiming to reduce the depth of the target circuit. Whereas the exponential resource overhead for describing quantum systems classically makes the existing methods not amenable to serving large-scale quantum circuits. Grounded in the entangling quantum generative adversarial network (EQ-GAN), we present in this article a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware. For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits, as well as the variational reconstruction of quantum circuits. The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware. We believe our work should facilitate the implementation and validation of the advantages of quantum algorithms.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Distributed quantum architecture search [0.0]
Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum computing.
Quantum architecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover high-performance circuit structures.
We propose an end-to-end distributed quantum architecture search framework, where we aim to automatically design distributed quantum circuit structures for interconnected quantum processing units with specific qubit connectivity.
arXiv Detail & Related papers (2024-03-10T13:28:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
arXiv Detail & Related papers (2021-06-02T12:04:56Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.