Banishing LLM Hallucinations Requires Rethinking Generalization
- URL: http://arxiv.org/abs/2406.17642v1
- Date: Tue, 25 Jun 2024 15:31:01 GMT
- Title: Banishing LLM Hallucinations Requires Rethinking Generalization
- Authors: Johnny Li, Saksham Consul, Eda Zhou, James Wong, Naila Farooqui, Yuxin Ye, Nithyashree Manohar, Zhuxiaona Wei, Tian Wu, Ben Echols, Sharon Zhou, Gregory Diamos,
- Abstract summary: Large Language Models (LLMs) frequently hallucinate despite their powerful chat, coding, and reasoning abilities.
We show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers.
We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts.
- Score: 2.0155206466638016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their powerful chat, coding, and reasoning abilities, Large Language Models (LLMs) frequently hallucinate. Conventional wisdom suggests that hallucinations are a consequence of a balance between creativity and factuality, which can be mitigated, but not eliminated, by grounding the LLM in external knowledge sources. Through extensive systematic experiments, we show that these traditional approaches fail to explain why LLMs hallucinate in practice. Specifically, we show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers. We corroborate these experimental findings with a theoretical construction showing that simple neural networks trained to predict the next token hallucinate when the training loss is above a threshold as it usually does in practice when training on internet scale data. We interpret our findings by comparing against traditional retrieval methods for mitigating hallucinations. We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts that are retrieved dynamically.
Related papers
- Generation Constraint Scaling Can Mitigate Hallucination [29.25122358598193]
hallucination in large language models (LLMs) is a critical challenge.
We empirically demonstrate that by simply scaling the readout vector that constrains generation in a memory-augmented LLM decoder, hallucination mitigation can be achieved in a training-free manner.
Our method is geometry-inspired and outperforms a state-of-the-art LLM editing method on the task of generation of Wikipedia-like biography entries.
arXiv Detail & Related papers (2024-07-23T23:58:19Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
Large vision-language models (LVLMs) produce captions that mention concepts that cannot be found in the image.
These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption.
Recent work suggests that addition of grounding objectives -- those that explicitly align image regions or objects to text spans -- reduces the amount of LVLM hallucination.
arXiv Detail & Related papers (2024-06-20T16:56:11Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
Large language models are successful in answering factoid questions but are also prone to hallucination.
We investigate the phenomenon of LLMs possessing correct answer knowledge yet still hallucinating from the perspective of inference dynamics.
Our study shed light on understanding the reasons for LLMs' hallucinations on their known facts, and more importantly, on accurately predicting when they are hallucinating.
arXiv Detail & Related papers (2024-03-29T06:48:30Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large
Language Models [146.87696738011712]
Large language models (LLMs) are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge.
To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation benchmark for Large Language Models (HaluEval)
arXiv Detail & Related papers (2023-05-19T15:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.