Generation Constraint Scaling Can Mitigate Hallucination
- URL: http://arxiv.org/abs/2407.16908v1
- Date: Tue, 23 Jul 2024 23:58:19 GMT
- Title: Generation Constraint Scaling Can Mitigate Hallucination
- Authors: Georgios Kollias, Payel Das, Subhajit Chaudhury,
- Abstract summary: hallucination in large language models (LLMs) is a critical challenge.
We empirically demonstrate that by simply scaling the readout vector that constrains generation in a memory-augmented LLM decoder, hallucination mitigation can be achieved in a training-free manner.
Our method is geometry-inspired and outperforms a state-of-the-art LLM editing method on the task of generation of Wikipedia-like biography entries.
- Score: 29.25122358598193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the issue of hallucinations in large language models (LLMs) is a critical challenge. As the cognitive mechanisms of hallucination have been related to memory, here we explore hallucination for LLM that is enabled with explicit memory mechanisms. We empirically demonstrate that by simply scaling the readout vector that constrains generation in a memory-augmented LLM decoder, hallucination mitigation can be achieved in a training-free manner. Our method is geometry-inspired and outperforms a state-of-the-art LLM editing method on the task of generation of Wikipedia-like biography entries both in terms of generation quality and runtime complexity.
Related papers
- MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.
We propose a novel dynamic correction decoding method for MLLMs (DeCo)
We evaluate DeCo on widely-used benchmarks, demonstrating that it can reduce hallucination rates by a large margin compared to baselines.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - LLM Hallucinations in Practical Code Generation: Phenomena, Mechanism, and Mitigation [33.46342144822026]
Code generation aims to automatically generate code from input requirements, significantly enhancing development efficiency.
Recent large language models (LLMs) based approaches have shown promising results and revolutionized code generation task.
Despite the promising performance, LLMs often generate contents with hallucinations, especially for the code generation scenario.
arXiv Detail & Related papers (2024-09-30T17:51:15Z) - Interpreting and Mitigating Hallucination in MLLMs through Multi-agent Debate [34.17353224636788]
We argue that hallucination in MLLMs is partially due to a lack of slow-thinking and divergent-thinking in these models.
Our approach can not only hallucinations but also interpret why they occur and detail the specifics of hallucination.
arXiv Detail & Related papers (2024-07-30T02:41:32Z) - Banishing LLM Hallucinations Requires Rethinking Generalization [2.0155206466638016]
Large Language Models (LLMs) frequently hallucinate despite their powerful chat, coding, and reasoning abilities.
We show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers.
We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts.
arXiv Detail & Related papers (2024-06-25T15:31:01Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing knowledge capabilities by integrating a structured and explicit read-and-write memory module.
Our experiments indicate that MemLLM enhances performance and interpretability, in language modeling general and in particular.
We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - Hallucination Diversity-Aware Active Learning for Text Summarization [46.00645048690819]
Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported.
Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs.
We propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed.
arXiv Detail & Related papers (2024-04-02T02:30:27Z) - Exploring and Evaluating Hallucinations in LLM-Powered Code Generation [14.438161741833687]
Large Language Models (LLMs) produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misalign with factual knowledge.
Existing work mainly focuses on investing the hallucination in the domain of natural language generation.
We conduct a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations present in it.
We propose HalluCode, a benchmark for evaluating the performance of code LLMs in recognizing hallucinations.
arXiv Detail & Related papers (2024-04-01T07:31:45Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.