論文の概要: Mask-Guided Attention U-Net for Enhanced Neonatal Brain Extraction and Image Preprocessing
- arxiv url: http://arxiv.org/abs/2406.17709v1
- Date: Tue, 25 Jun 2024 16:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:11:55.509383
- Title: Mask-Guided Attention U-Net for Enhanced Neonatal Brain Extraction and Image Preprocessing
- Title(参考訳): Mask-Guided Attention U-Netによる新生児脳の抽出と画像前処理
- Authors: Bahram Jafrasteh, Simon Pedro Lubian-Lopez, Emiliano Trimarco, Macarena Roman Ruiz, Carmen Rodriguez Barrios, Yolanda Marin Almagro, Isabel Benavente-Fernandez,
- Abstract要約: マスク誘導型アテンションニューラルネットワークMGA-Netについて紹介する。
他の構造から脳を抽出し、高品質な脳画像の再構築を目的としている。
今回提案したMGA-Netを,様々な臨床設定と新生児年齢群から得られた多様なデータセットで広範囲に検証した。
- 参考スコア(独自算出の注目度): 0.9674145073701153
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we introduce MGA-Net, a novel mask-guided attention neural network, which extends the U-net model for precision neonatal brain imaging. MGA-Net is designed to extract the brain from other structures and reconstruct high-quality brain images. The network employs a common encoder and two decoders: one for brain mask extraction and the other for brain region reconstruction. A key feature of MGA-Net is its high-level mask-guided attention module, which leverages features from the brain mask decoder to enhance image reconstruction. To enable the same encoder and decoder to process both MRI and ultrasound (US) images, MGA-Net integrates sinusoidal positional encoding. This encoding assigns distinct positional values to MRI and US images, allowing the model to effectively learn from both modalities. Consequently, features learned from a single modality can aid in learning a modality with less available data, such as US. We extensively validated the proposed MGA-Net on diverse datasets from varied clinical settings and neonatal age groups. The metrics used for assessment included the DICE similarity coefficient, recall, and accuracy for image segmentation; structural similarity for image reconstruction; and root mean squared error for total brain volume estimation from 3D ultrasound images. Our results demonstrate that MGA-Net significantly outperforms traditional methods, offering superior performance in brain extraction and segmentation while achieving high precision in image reconstruction and volumetric analysis. Thus, MGA-Net represents a robust and effective preprocessing tool for MRI and 3D ultrasound images, marking a significant advance in neuroimaging that enhances both research and clinical diagnostics in the neonatal period and beyond.
- Abstract(参考訳): 本研究では,新しいマスク誘導型注意神経ネットワークであるMGA-Netを紹介する。
MGA-Netは、他の構造から脳を抽出し、高品質な脳画像の再構築を目的としている。
ネットワークは共通のエンコーダと2つのデコーダを使用し、1つは脳マスク抽出用、もう1つは脳領域再構築用である。
MGA-Netの重要な特徴は、高レベルのマスク誘導アテンションモジュールで、脳マスクデコーダの機能を活用して画像再構成を強化する。
同じエンコーダとデコーダがMRIと超音波の両方の画像を処理できるようにするため、MGA-Netは正弦波位置符号化を統合している。
この符号化はMRIとUSの画像に異なる位置値を割り当て、モデルが両方のモダリティから効果的に学習できるようにする。
その結果、単一のモダリティから学習した特徴は、米国のような少ないデータでモダリティを学ぶのに役立つ。
今回提案したMGA-Netを,様々な臨床設定と新生児年齢群から得られた多様なデータセットで広範囲に検証した。
画像分割におけるDICEの類似度係数,リコール,精度,画像再構成における構造的類似度,および3次元超音波画像からの総脳容積推定におけるルート平均2乗誤差について評価した。
以上の結果から,MGA-Netは画像再構成や容積解析において高い精度を達成しつつ,脳の抽出やセグメンテーションにおいて優れた性能を実現し,従来の手法よりも優れていたことが示唆された。
したがって、MGA-NetはMRIと3D超音波画像のための堅牢で効果的な前処理ツールであり、新生児期以降の研究と臨床診断の両方を増強する神経画像の大幅な進歩を示している。
関連論文リスト
- Exploration of Multi-Scale Image Fusion Systems in Intelligent Medical Image Analysis [3.881664394416534]
MRI画像上で脳腫瘍の自動分離を行う必要がある。
このプロジェクトは、U-Netに基づいたMRIアルゴリズムを構築することを目的としている。
論文 参考訳(メタデータ) (2024-05-23T04:33:12Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Brain decoding: toward real-time reconstruction of visual perception [1.3654846342364308]
過去5年間で、生成的および基礎的AIシステムの使用は、脳活動の復号化を大幅に改善した。
視覚知覚は、機能的磁気共鳴イメージング(fMRI)から顕著な忠実さでデコードできる。
本稿では、高時間分解能で脳活動を測定する神経イメージング装置である脳磁図(MEG)に基づく別のアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-18T09:51:38Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Multiclass MRI Brain Tumor Segmentation using 3D Attention-based U-Net [0.0]
本稿では,脳腫瘍のマルチリージョンセグメンテーションのための3次元アテンションに基づくU-Netアーキテクチャを提案する。
注意機構は、健康な組織を非強調化し、悪性組織をアクセントすることで、セグメンテーションの精度を向上させる。
論文 参考訳(メタデータ) (2023-05-10T14:35:07Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z) - Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images [4.3310896118860445]
本稿では,脳腫瘍セグメンテーションのためのU-Netの軽量実装を提案する。
提案アーキテクチャでは,提案する軽量U-Netをトレーニングするために大量のデータを必要としない。
軽量なU-NetはBITEデータセット上で非常に有望な結果を示し、平均交叉対合同(IoU)は89%に達する。
論文 参考訳(メタデータ) (2022-11-03T15:19:58Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。