論文の概要: Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation
- arxiv url: http://arxiv.org/abs/2406.17749v1
- Date: Tue, 25 Jun 2024 17:34:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:21:40.385125
- Title: Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation
- Title(参考訳): NVIDIA Jetson Nanoによるリアルタイムシステムのためのディープラーニングモデルのベンチマーク:実証的研究
- Authors: Tushar Prasanna Swaminathan, Christopher Silver, Thangarajah Akilan,
- Abstract要約: この研究は、複雑なディープラーニングモデルの最適化を実証的に研究し、組み込みデバイス上で機能を分析する。
画像分類と映像行動検出のための推論速度の観点から最適化されたモデルの有効性を評価する。
- 参考スコア(独自算出の注目度): 2.3636539018632616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of complex deep learning (DL) models has revolutionized various applications, including computer vision-based solutions, prompting their integration into real-time systems. However, the resource-intensive nature of these models poses challenges for deployment on low-computational power and low-memory devices, like embedded and edge devices. This work empirically investigates the optimization of such complex DL models to analyze their functionality on an embedded device, particularly on the NVIDIA Jetson Nano. It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection. The experimental results reveal that, on average, optimized models exhibit a 16.11% speed improvement over their non-optimized counterparts. This not only emphasizes the critical need to consider hardware constraints and environmental sustainability in model development and deployment but also underscores the pivotal role of model optimization in enabling the widespread deployment of AI-assisted technologies on resource-constrained computational systems. It also serves as proof that prioritizing hardware-specific model optimization leads to efficient and scalable solutions that substantially decrease energy consumption and carbon footprint.
- Abstract(参考訳): 複雑なディープラーニング(DL)モデルの普及は、コンピュータビジョンベースのソリューションを含む様々なアプリケーションに革命をもたらし、リアルタイムシステムへの統合を促している。
しかし、これらのモデルのリソース集約的な性質は、組み込みデバイスやエッジデバイスのような低計算能力と低メモリデバイスへのデプロイに課題をもたらす。
この研究は、複雑なDLモデルの最適化を実証的に研究し、組み込みデバイス、特にNVIDIA Jetson Nano上でそれらの機能を分析する。
画像分類と映像行動検出のための推論速度の観点から最適化されたモデルの有効性を評価する。
実験の結果、平均して最適化されたモデルでは、最適化されていないモデルよりも16.11%の速度改善が見られた。
このことは、モデル開発とデプロイメントにおけるハードウェアの制約と環境の持続可能性を考えることの重要性を強調するだけでなく、AI支援技術のリソース制約のある計算システムへの展開を可能にする上で、モデル最適化が重要な役割を担っていることも強調している。
また、ハードウェア固有のモデル最適化の優先順位付けは、エネルギー消費と炭素フットプリントを大幅に減少させる効率的でスケーラブルなソリューションにつながるという証明としても機能する。
関連論文リスト
- On Accelerating Edge AI: Optimizing Resource-Constrained Environments [1.7355861031903428]
リソース制約のあるエッジデプロイメントでは、厳格な計算、メモリ、エネルギー制限とハイパフォーマンスのバランスをとるAIソリューションが要求される。
本稿では,このような制約下でのディープラーニングモデルを加速するための主要な戦略について概観する。
論文 参考訳(メタデータ) (2025-01-25T01:37:03Z) - Low-Rank Adapters Meet Neural Architecture Search for LLM Compression [1.8434042562191815]
LLM(Large Language Models)の急速な拡張は、微調整と展開に必要な計算資源に関して重大な課題を提起している。
低ランクアダプタの最近の進歩は、これらのモデルのパラメータ効率のよい微調整(PEFT)において有効であることを示した。
本稿では,低ランク表現をニューラルアーキテクチャサーチ(NAS)技術と相乗化するための革新的なアプローチを包括的に論じる。
論文 参考訳(メタデータ) (2025-01-23T02:14:08Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
バイオメディカルイメージングにおいて広く使われているU-Netスタイルのアーキテクチャを解析する手法を開発した。
我々は,プルーニングが性能を低下させることなく,少なくとも70%圧縮できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-12T22:05:01Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。