論文の概要: ESM: A Framework for Building Effective Surrogate Models for Hardware-Aware Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2508.01505v1
- Date: Sat, 02 Aug 2025 22:06:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.910264
- Title: ESM: A Framework for Building Effective Surrogate Models for Hardware-Aware Neural Architecture Search
- Title(参考訳): ESM: ハードウェア対応ニューラルアーキテクチャ検索のための効果的なサロゲートモデル構築フレームワーク
- Authors: Azaz-Ur-Rehman Nasir, Samroz Ahmad Shoaib, Muhammad Abdullah Hanif, Muhammad Shafique,
- Abstract要約: ハードウェア対応ニューラルアーキテクチャサーチ(NAS)は、リソース制約のあるデバイスに効率的なディープニューラルネットワーク(DNN)を設計するための最も有望なテクニックの1つである。
我々は、異なる種類の代理モデルを研究し、その強みと弱みを強調します。
本稿では,モデル生成パイプラインの異なる段階の全体的なコストを考慮した,信頼性の高いデータセット生成と効率的なモデル生成を実現するための総合的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.9276746621153285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hardware-aware Neural Architecture Search (NAS) is one of the most promising techniques for designing efficient Deep Neural Networks (DNNs) for resource-constrained devices. Surrogate models play a crucial role in hardware-aware NAS as they enable efficient prediction of performance characteristics (e.g., inference latency and energy consumption) of different candidate models on the target hardware device. In this paper, we focus on building hardware-aware latency prediction models. We study different types of surrogate models and highlight their strengths and weaknesses. We perform a systematic analysis to understand the impact of different factors that can influence the prediction accuracy of these models, aiming to assess the importance of each stage involved in the model designing process and identify methods and policies necessary for designing/training an effective estimation model, specifically for GPU-powered devices. Based on the insights gained from the analysis, we present a holistic framework that enables reliable dataset generation and efficient model generation, considering the overall costs of different stages of the model generation pipeline.
- Abstract(参考訳): ハードウェア対応ニューラルアーキテクチャサーチ(NAS)は、リソース制約のあるデバイスに効率的なディープニューラルネットワーク(DNN)を設計するための最も有望なテクニックの1つである。
サーロゲートモデルは、ターゲットハードウェアデバイス上の異なる候補モデルの性能特性(例えば、推論遅延とエネルギー消費)の効率的な予測を可能にするため、ハードウェア対応NASにおいて重要な役割を果たす。
本稿では,ハードウェアを意識した遅延予測モデルの構築に焦点をあてる。
我々は、異なる種類の代理モデルを研究し、その強みと弱みを強調します。
モデル設計プロセスに関わる各ステージの重要性を評価し,特にGPU駆動デバイスにおいて有効な推定モデルを設計・訓練するために必要な方法とポリシーを特定することを目的として,これらのモデルの予測精度に影響を与える因子の異なる影響を理解するための体系的な分析を行う。
この分析から得られた知見に基づき、モデル生成パイプラインの異なるステージの全体的なコストを考慮して、信頼性の高いデータセット生成と効率的なモデル生成を可能にする総合的なフレームワークを提案する。
関連論文リスト
- Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization [80.82828320306464]
フォトニックデバイス開発(PDD)は、様々な波長、スケール、アプリケーションにまたがる光を制御する新しいデバイスの設計と実装において大きな成功を収めた。
PDDは、設計パラメータからデバイス動作を導出する、デバイス性能をシミュレーションする、最適なデバイスを製造する、デバイス性能を測定する、という5段階の反復的プロセスである。
PDDは、大規模な最適化の展望、構造的または光学的特徴の不確実性、堅牢な製造プロセスの実装の困難に悩まされている。
本稿では,機械学習支援型PDDの実現に向けて,これらの手法の総合的な展望を示す。
論文 参考訳(メタデータ) (2025-06-24T23:32:54Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
この研究は、複雑なディープラーニングモデルの最適化を実証的に研究し、組み込みデバイス上で機能を分析する。
画像分類と映像行動検出のための推論速度の観点から最適化されたモデルの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-25T17:34:52Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Statistical Hardware Design With Multi-model Active Learning [1.7596501992526474]
本稿では,効率的なハードウェア設計の課題を解決するために,モデルに基づく能動的学習手法を提案する。
提案手法は,設計空間探索と性能予測を同時に行うのに十分な精度のハードウェアモデルを提供する。
論文 参考訳(メタデータ) (2023-03-14T16:37:38Z) - An Intelligent End-to-End Neural Architecture Search Framework for Electricity Forecasting Model Development [4.940941112226529]
本稿では、時系列電気予測モデルの開発のためのインテリジェント自動アーキテクチャサーチ(IAAS)フレームワークを提案する。
提案フレームワークは,ネットワーク機能保存変換操作,強化学習(RL)に基づくネットワーク変換制御,ネットワークスクリーニングの3つの主要コンポーネントを含む。
提案したIAASフレームワークは,精度と安定性の予測において,既存の10のモデルや手法を著しく上回っていることを実証する。
論文 参考訳(メタデータ) (2022-03-25T10:36:27Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
我々は,一発のニューラルネットワーク探索モデルを用いて,難解な数のニューラルネットワークの性能を暗黙的に評価する。
本手法は,待ち時間が異なるモデル間の相対性能を正確にモデル化し,異なるデータセットをまたいだ精度で未検出モデルの性能を予測できることを示す。
論文 参考訳(メタデータ) (2021-04-25T00:05:48Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。